ANZIAM J. 46(E) pp.C935--C955, 2005.

Algorithms for the recovery of Kohlrausch parameters from viscoelastic stress-strain data

Saiful A. Husain

R. S. Anderssen

(Received 29 January 2004, revised 29 July 2005)

Abstract

The Boltzmann model of linear viscoelasticity is an appropriate model for materials that simultaneously exhibit viscous and elastic behaviour, such as synthetic and natural polymers. The nature of the viscoelasticity is encapsulated in terms of the structure of its kernel function (the relaxation modulus) G(t). Husain and Anderssen (2005) proposed a procedure for approximating G(t), based on taking moments of the Boltzmann equation with G(t) the sum of Kohlrausch functions. The shortcoming of this proposal is the need to evaluate the moments on the half-interval [0,¥). We propose a method which takes the strain-rates to have a polynomial form and G(t) to be a sum of Kohlrausch functions. It yields methods for the direct estimation of the parameters in Kohlrausch models for G(t).

Download to your computer

Authors

Saiful A. Husain
CMA, Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200 Australia; Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, Gadong, BE 1410 Brunei. mailto:Saiful@fos.ubd.edu.bn
R. S. Anderssen
CSIRO, Mathematical and Information Sciences, GPO Box 664, Canberra, ACT 2601, Australia. mailto:Bob.Anderssen@csiro.au

Published September 22, 2005. ISSN 1446-8735

References

  1. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions, Applied Mathematical Series. New York: Dover, 55:5, 1965.
  2. R. S. Anderssen and R. J. Loy. Completely Monotone Fading Memory Relaxation Modulii. Bull. Austral. Math. Soc., 65:449--460, 2002.
  3. R. S. Anderssen and R. J. Loy. Rheological Implications of Completely Monotone Fading Memory. Journal of Rheology, 46(6):1459--1472, 2002.
  4. R. S. Anderssen, Saiful A. Husain and R. J. Loy. Kohlrausch Functions: Properties and Applications, ANZIAM Journal, E(45):C800--C816, 2004. http://anziamj.austms.gov.au/V45/CTAC2003/Ande
  5. A. N. Beris and B. J. Edwards. On the Admissability Criteria for Linear Viscoelasticity Kernels. Rheol. Acta, 32:505--510, 1993.
  6. L. Boltzmann. Zur Theorie der Elastischen Nachwirkung. Ann. Phys. Chem., 7:624--657, 1876.
  7. A. R. Davies and R. S. Anderssen. Sampling Localization in Determining the Relaxation Spectrum. Journal of Non-Newtonian Fluid Mechanics, 73:163--179, 1997.
  8. W. A. Day. On Monotonocity of the Relaxation Functions of Viscoelastic Materials. Proc. Camb. Philos. Soc., 67:503--508, 1970.
  9. W. Feller. An Introduction to Probability Theory and its Applications. John Wiley and Sons, New York, 2, 1970.
  10. A. Z. Grinshpan, M. E. H. Ismail, and D. L. Milligan. On Complete Monotonocity and Diesel Fuel Spray. Math. Intelligencer, 22:43--53, 2000.
  11. Saiful A. Husain and R. S. Anderssen. Modelling the Relaxation Modulus of Linear Viscoelasticity Using Kohlrausch Functions. J. Non-Newtonian Fluid Mechanics, 125:159--170, 2005.
  12. Feng Qi. Monotonicity Results and Inequalities For the Gamma and Incomplete Gamma Functions. Mathematical Inequalities and Applications, 5(1):61--67, 2002. http://www.mia-journal.com/main.sap
  13. R. Kohlrausch. Theorie des Elektrischen Ruckstandes in der Leidener Flasche. Pogg. Ann. Phys. Chem., 91:179--214, 1854.
  14. D. V. Widder. The Laplace Transform. Princeton University Press, Princeton, 1946.
  15. G. Williams and David C. Watts. Non-symmetrical Dielectric Relaxation Behaviour Arising from a Simple Empirical Decay Function. Trans. Faraday Soc., 66:80--85, 1970.
  16. G. Williams. The Non-crystalline Higher Polymer and the Related Material lies between the Electricity Relaxes the Characteristic. IEEE Trans on Electrical Insulation, EI-20(5):843--857, 1985.