ANZIAM J. 46(E) pp.C1254--C1271, 2005.

Effective simulation methods for polyelectrolytes in low dielectric solvents

M. O. Khan

G. Kennedy

D. Y. C. Chan

(Received 22 November 2004, revised 22 October 2005)

Abstract

Simulations of polyelectrolytes in low dielectric solvents converge slowly. This can be circumvented by using clothed global moves or parallel expanded techniques. In clothed moves the counterions are moved with the polyelectrolyte backbone and are not left behind when a substantial part of the chain is moved. For moderately charged systems the speed-up has been shown to be by a factor of up to 3. We show how, for systems with strong electrostatic interactions, much larger efficiency gains in the simulation process, by a factor of over 400, can be obtained. In our parallel expanded algorithm, a number of conventional Monte--Carlo simulations are carried out in parallel, with only the dielectric constant being different. By allowing the different simulations to communicate and exchange conformations, trapped configurations in the low dielectric simulations may escape via the higher dielectric simulations. We show how this method scales linearly up to 8 processors for highly charged polyelectrolytes.

Download to your computer

Authors

M. O. Khan
Particulate Fluids Processing Centre, Dept. Mathematics & Statistics, The University of Melbourne, Victoria, Australia. mailto:m.khan@ms.unimelb.edu.au
G. Kennedy
School of Mathematical Sciences, Monash University, Victoria, Australia. mailto:gareth.kennedy@maths.monash.edu.au
D. Y. C. Chan
Particulate Fluids Processing Centre, Dept. Mathematics & Statistics, The University of Melbourne, Victoria, Australia. mailto:d.chan@ms.unimelb.edu.au

Published November 17, 2005. ISSN 1446-8735

References

  1. M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, Oxford, 1989.
  2. V. A. Bloomfield. DNA condensation by multivalent cations. Biopymers, 44:269--282, 1997.
  3. Balint Joo et al. Parallel tempering in lattice QCD with O(a) improved Wilson fermions. Phys. Rev. D, 59:114501--114509, 1999.
  4. H. L. Gordon and J. P. Valleau. A partially clothed pivot algorithm for model polyelectrolyte solution. Mol. Sim., 14:361--379, 1995.
  5. Ulrich H.E. Hansmann. Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett., 281:140--150, 1997.
  6. Ulrich H.E. Hansmann and Y. Okamato. Numerical comparisons of three recently proposed algorithms in the protein folding problem. J. Comput. Chem., 18:920--933, 1997.
  7. Anders Irback and Erik Sandelin. Monte--Carlo study of the phase structure of compact polymer chains. J. Chem. Phys., 110(2):12256--12262, 1999.
  8. B. Jonsson, C. Peterson, and B. Soderberg. Variational approach to the structure and thermodynamics of linear polyelectrolytes with coulomb and screened coulomb interactions. J. Phys. Chem., 99:1251--1266, 1995.
  9. M. O. Khan and D. Y. C. Chan. Monte--Carlo simulations of stretched charged polymers. J. Phys. Chem. B, 107:8131--8139, 2003.
  10. M. O. Khan and B. Jonsson. Electrostatic correlations fold DNA. Biopolymers, 49:121--125, 1999.
  11. A. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsov--Velyaminov. New approach to Monte--Carlo calculation of the free-energy --- method of expanded ensembles. J. Chem. Phys., 96:1776--1783, 1992.
  12. N. Madras and A. D. Sokal. The pivot algorithm: A higly efficient Monte--Carlo method for the self-avoiding walk. J. Stat. Phys., 50:109--186, 1988.
  13. M. J. Stevens and K. Kremer. The nature of flexible linear polyelectrolytes in salt free solution: {A} molecular dynamics study. J. Chem. Phys., 103:1669--1690, 1995.
  14. M. Ullner. Polyelectrolyte models in theory and simulation. In S. Tripathy, J. Kumar, and H. S. Halwa, editors, Handbook of Polyelectrolytes and their Applications, Los Angeles, 2002. American Science.
  15. R. G. Winkler, M. Gold, and P. Reineker. Collapse of polyelectrolyte macromolecules by counterion condensation and ion pair formations: A molecular dynamics study. Phys. Rev. Lett., 80:3731--3734, 1998.