ANZIAM J. 46(E) ppC210--C244, 2005.

Computational studies of the shear flow behaviour of a model for nematic liquid crystalline polymers

D. H. Klein

C. Garcia-Cervera

H. D. Ceniceros

L. G. Leal

(Received 4 November 2004, revised 6 April 2005)

Abstract

We present an accurate and efficient numerical method to the solve the microstructure-flow problem that constitutes the coupling of the molecular-based Doi-Marrucci-Greco model to the Cauchy equation of motion and continuity equation. We also provide a general introduction to the problem of the flow of complex fluids. Preliminary investigations of the predictive capabilities of the Doi-Marrucci-Greco model show that with increasing shear rate, in accordance with both experimental observations and other theoretical predictions, the model exhibits three flow regimes: steady linear shear flow at low shear rate; steady roll cells at intermediate shear rates; and irregular flow and orientation patterns at high shear rates. Given sufficiently high shear rates, the irregular flow structure is accompanied by the formation of ±1 and ±1/2 strength disclinations. Furthermore, at shear rates large enough to inhibit the tumbling of the average molecular orientation, the solution no longer contains disclinations or roll cells, but retains some structure in the flow direction that has the visual appearance of stripes.

Download to your computer

Authors

D. H. Klein
C. Garcia-Cervera
H. D. Ceniceros
Department of Mathematics, University of California, Santa Barbara, California 93106, USA. mailto:cgarcia@math.ucsb.edu and mailto:hdc@math.ucsb.edu
L. G. Leal
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA. mailto:harley@engr.ucsb.edu and mailto:lgl20@engr.ucsb.edu

Published April 26, 2005. ISSN 1446-8735

References

  1. R. B. Bird, C. F. Curtis, R. C. Armstrong, and O. Hassager. Dynamics of polymeric fluids, volume 2: Kinetic theory. John Wiley and Sons, Inc., 2nd edition, 1987.
  2. C. V. Chaubal and L. G. Leal. A closure approximation for liquid-crystalline polymer models based on parametric density estimation. Journal of Rheology, 1:177--201, 1998. http://dx.doi.org/10.1122/1.550887
  3. C. V. Chaubal and L. G. Leal. Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems. {P}art 2: {T}he effect of flow perturbations on the simple shear behaviour of lcps. Journal of Non-Newtonian Fluid Mechanics, 82(1):25--55, 1999. http://dx.doi.org/10.1016/S0377-0257(98)00126-8
  4. P. G. de Gennes and J. Prost. The physics of liquid crystals. Oxford University Press, London, 2nd edition, 1993.
  5. M. Doi. Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. Journal of Polymer Science: Polymer Physics Edition, 19:229--243, 1981. http://www3.interscience.wiley.com/cgi-bin/abstract/104060267
  6. M. Doi and S. F. Edwards. The Theory of Polymer Dynamics. Oxford University Press, 1986.
  7. A. M. Donald and A. H. Windle. Liquid crystalline polymers. Cambridge University Press, Cambridge, 1992.
  8. J. L. Ericksen. Anisotropic fluids. Archive for Rational Mechanics and Analysis, 4(3):231--237, 1960.
  9. V. Faraoni, M. Grosso, S. Crescitelli, and P. L. Maffettone. The rigid-rod model for nematic polymers: {A}n analysis of the shear flow problem. Journal of Rheology, 43(3):829--843, 1999. http://link.aip.org/link/?JOR/43/829/1
  10. J. Feng, C. V. Chaubal, and L. G. Leal. Closure approximations for the doi theory: {W}hich to use in simulating complex flows of liquid-crystalline polymers? Journal of Rheology, 42(5):1095--1119, 1998. http://link.aip.org/link/?JOR/42/1095/1
  11. J. Feng and L. G. Leal. Pressure-driven channel flows of a model liquid-crystalline polymer. Physics of Fluids, 11(10):2821--2835, 1999. http://link.aip.org/link/?PHF/11/2821/1
  12. J. Feng, G. Sgalari, and L. G. Leal. A theory for flowing nematic polymers with orientational distortion. Journal of Rheology, 44(5):1085--1101, 2000. http://link.aip.org/link/?JOR/44/1085/1
  13. J. J. Feng, J. Tao, and L. G. Leal. Roll cells and disclinations in sheared nematic polymers. Journal of Fluid Mechanics, 449:179--200, 2001.
  14. C. A. J. Fletcher, R. Glowinski, and M. Holt, editors. Computational Techniques for Fluid Dynamics: Fundamental and General Techniques, Vol. 1. Springer-Verlag, New York, 1991.
  15. E. J. Hinch and L. G. Leal. Constitutive equations in suspension mechanics. {P}art 2. {A}pproximate forms for a suspension of rigid particles affected by {B}rownian rotations. Journal of Fluid Mechanics, 76:187--208, 1976.
  16. J. Laminie and U. Meier. Solving {N}avier--{S}tokes equations on the {C}edar multi-cluster system. Technical Report 978, University of Illinois at Urbana-Champain, Center for Super-Computing Research and Development, 1990.
  17. R. G. Larson. Arrested tumbling in shearing flows of liquid crystalline polymers. Macromolecules, 23(17):3983--3992, 1990. http://pubs.acs.org/cgi-bin/abstract.cgi/mamobx/1990/23/i17/f-pdf/f_ma00219a020.pdf
  18. R. G. Larson. Roll-cell instabilities in shearing flows of nematic polymers. Journal of Rheology, 37(2):175--197, 1992. http://link.aip.org/link/?JOR/37/175/1
  19. R. G. Larson. The Structure and Rheology of Complex Fluids. Oxford University Press, New York, 1998.
  20. R. G. Larson and D. W. Mead. Development of orientation and texture during shearing of liquid-crystalline polymers. Liquid Crystals, 12(5):751--768, 1992.
  21. R. G. Larson and D. W. Mead. The {E}ricksen number and {D}eborah number cascades in sheared polymeric nematics. Liquid Crystals, 15(2):151--169, 1993.
  22. R. G. Larson and H. C. Ottinger. Effect of molecular elasticity on out-of-plane orientations in shearing flows of liquid-crystalline polymers. Macromolecules, 24:6270--6282, 1991. http://pubs.acs.org/cgi-bin/abstract.cgi/mamobx/1991/24/i23/f-pdf/f_ma00023a033.pdf
  23. S. K. Lele. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103:16--42, 1992. http://dx.doi.org/10.1016/0021-9991(92)90324-R
  24. F. M. Leslie. Some constitutive equations for liquid crystals. Archive for Rational Mechanics and Analysis, 28(4):265--283, 1968.
  25. W. Maier and A. Saupe. Eine einfache molekular-statistische theorie der nematischen kristallinfl{u}ssigen phase. {I}. Zeitschrift f{u}r Naturforschung Part A - Astrophysik Physik und Physikalische Chemie, 14(10):882--889, 1958.
  26. G. Marrucci and F. Greco. The elastic constants of {M}aier-{S}aupe rodlike molecule nematics. Molecular Crystals and Liquid Crystals, 206:17--30, 1991.
  27. R. G. Owens and T. N. Phillips. Computational Rheology. Imperial College Press, London, 2002.
  28. S. Prager. Stress-strain relationship in a suspension of dumbells. Transactions of the Society of Rheology, 1:53--62, 1957.
  29. G. Sgalari, L. G. Leal, and E. Meiburg. Texture evolution of sheared liquid crystalline polymers: {N}umerical predictions of roll-cells instability, director turbulence, and striped texture with a molecular model. Journal of Rheology, 47(6):1417--1444, 2003. http://link.aip.org/link/?JOR/47/1417/1
  30. J. Tao and J. J. Feng. Effects of elastic anisotropy on the flow and orientation of sheared nematic liquid crystals. Journal of Rheology, 47(4):1051--1070, 2003. http://link.aip.org/link/?JOR/47/1051/2
  31. H. A. van der Vorst. Bi-{CGSTAB}: A fast and smoothly converging variant of {B}i-{CG} for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13(2):631--644, 1992. http://locus.siam.org/SISC/volume-13/art_0913035.html
  32. M. van Gurp. Letter to the {E}ditor: {O}n the use of spherical tensors and the maximum entropy method to obtain closure for anisotropic liquids. Journal of Rheology, 42(5):1269--1271, 1998. http://link.aip.org/link/?JOR/42/1269/1