ANZIAM J. 46(E) pp.C744--C763, 2005.

CFD simulation of dilute gas-solid two-phase flows with different solid size distributions in a curved $90^\circ $ duct bend

B. T. Kuan

(Received 11 October 2004, revised 17 May 2005)

Abstract

Computational fluid dynamics predictions of dilute gas-solid flow through a curved 90° duct bend are performed. Flows with two different size distributions of glass spheres having mean diameters 66 mm and 77 mm are considered. The curved bend is square-sectioned (150 mm×150 mm) and has a turning radius of 1.5 times the duct's hydraulic diameter. Turbulent flow quantities at Re = 15,000 are calculated based on a Differential Reynolds Stress Model, while a Lagrangian particle tracking model predicts solids velocities. The model makes use of a modified shear-slip lift force formula which is consistent with experimental observation for 0.18 < Rep < 8. The predictions are compared against experimental measurements taken using laser-Doppler Anemometry. The study indicates that the predicted gas-solid flow behaviour near the outer wall is strongly dependent upon particle size fractions. Prediction quality deteriorates near the inner wall of the bend where local solids concentration diminishes and this points to a major limitation in the Lagrangian particle tracking methodology. The measured particle velocities at the inner wall region is found to be insensitive to the particle size distribution.

Download to your computer

Authors

B. T. Kuan
Cooperative Research Centre for Clean Power from Lignite, Division of Minerals, CSIRO, Clayton, Australia. mailto:benny.kuan@csiro.au

Published August 4, 2005. ISSN 1446-8735

References

  1. M. J. Millen, B. D. Sowerby, P. J. Coghill, J. R. Tickner, R. Kingsley and C. Grima. Plant tests of an on-line multiple-pipe pulverized coal mass flow measuring system. Flow Measurement and Instrumentation, 11, 153--158, 2000. http://dx.doi.org/10.1016/S0955-5986(00)00013-3
  2. J. Ma, and Y. Yan. Design and evaluation of electrostatic sensors for the measurement of velocity of pneumatically conveyed solids. Flow Measurement and Instrumentation, 11, 195--204, 2000. http://dx.doi.org/10.1016/S0955-5986(00)00019-4
  3. N. Huber and M. Sommerfeld. Characterization of the Cross-Sectional Particle Concentration Distribution in Pneumatic Conveying Systems. Powder Technology, 79, 191--210, 1994. http://dx.doi.org/10.1016/0032-5910(94)02823-0
  4. A. Yilmaz and E. K. Levy. Roping phenomena in pulverized coal conveying lines. Powder Technology, 95, 43--48, 1998. http://dx.doi.org/10.1016/S0032-5910(97)03314-7
  5. M. A. Founti and A. S. Klipfel. Numerical simulation of pneumatic transport and erosion wear in the distribution ducts in large lignite power plants. ASME Fluids Engineering Conference, FED-Vol. 236, 717--724, 1996.
  6. W. S. J. Uijttewall and R. V. A. Oliemans. Particle dispersion and deposition in direct numerical and large eddy simulations of vertical pipe flows. Physics of Fluids, 8(10), 2590--2604, 1996. http://dx.doi.org/10.1063/1.869046
  7. M. Sommerfeld, N. Huber, and P. Wachter. Gas-Solid Flows. in D. E. Stock, M. W. Reeks, Y. Tsuji, M. Gautam, E. E. Michaelides, and J. T. Jurewicz, editors, ASME Fluids Engineering Conference, FED-Vol. 166, 183--191, 1993.
  8. B. E. Launder, G. J. Reece, and W. Rodi. Progress in the development of a Reynolds stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537--566, 1975.
  9. D. G. Lilley and D. L. Rhode. A computer code for swirling turbulent axisymmetric recirculating flows in practical isothermal combustor geometries. NASA Contractor Report CR3442, 1982.
  10. W. Shyy and M. Correa. A Systematic comparison of several numerical schemes for complex flow calculations. AIAA 23rd Aerospace Sciences Meeting, January 14-17, Nevada, AIAA-85-0440, 1985.
  11. S. Hogg and M. A. Leschziner. Computation of highly swirling confined flow with a Reynolds stress turbulent model. AIAA Journal, 27(1), 57--63, 1989. http://pdf.aiaa.org/jaPreview/AIAAJ/1989/PVJAPRE10094.pdf
  12. L. S. Fan and C. Zhu. Principles of gas-solid flows. Cambridge University Press, Cambridge, UK, 1998.
  13. N. Huber and M. Sommerfeld. Modelling and numerical calculation of dilute-phase pneumatic conveying in pipe systems. Powder Technology, 99, 90--101, 1998. http://dx.doi.org/10.1016/S0032-5910(98)00065-5
  14. P. G. Saffman. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22(2), 385--400,1965.
  15. R. Mei. An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. International Journal of Multiphase Flow, 18(1), 145--147, 1992. http://dx.doi.org/10.1016/0301-9322(92)90012-6
  16. A. M. Mollinger, F. F. M. Nieuwstadt, and J. M. Bessem. A new device to measure the lift force on a particle in the viscous sublayer. Measurement in Science and Technology, 6, 206--213, 1995. http://www.iop.org/EJ/abstract/0957-0233/6/2/013
  17. A. M. Mollinger and F. T. M. Nieuwstadt. Measurement of the lift force on a particle fixed to the wall in the viscous sublayer of a fully developed turbulent boundary layer. Journal of Fluid Mechanics, 316, 285--306, 1996.
  18. S. Matsumoto and S. Saito. Monte Carlo simulation of horizontal pneumatic conveying based on the rough wall model. Journal of Chemical Engineering of Japan, 3(1), 223--230, 1970.
  19. K. P. Schade, H. J. Erdmann, Th. Hadrich, H. Schneider, Th. Frank, and K. Bernert. Experimental and numerical investigation of particle erosion caused by pulverised fuel in channels and pipework of coal-fired power plant. Powder Technology, 125, 242--250, 2002. http://dx.doi.org/10.1016/S0032-5910(01)00512-5
  20. B. Van Leer. Towards the ULTIMATE conservation difference scheme. II. Monotonicity and conservation combined in a second order scheme. Journal of Computational Physics, 14, 361--370, 1974. http://dx.doi.org/10.1016/0021-9991(74)90019-9
  21. B. P. Leonard. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computational Methods in Applied Mechanical Engineering, 18, 59--98, 1979. http://dx.doi.org/10.1016/0045-7825(79)90034-3
  22. M. M. Enayet, M. M. Gibson, A. M. K. P. Taylor, and M. Yianneskis. Laser-Doppler measurements of laminar and turbulent flow in a pipe bend. International Journal of Heat and Fluid Flow, 3(4), 213--219, 1982. http://dx.doi.org/10.1016/0142-727X(82)90024-8