ANZIAM J. 46(E) ppC439--C457, 2005.

A two-dimensional CFD model for heap bioleaching of chalcocite

M. J. Leahy

M. R. Davidson

M. P. Schwarz

(Received 21 October 2004, revised 12 May 2005)

Abstract

A 3-phase computational fluid dynamics (CFD) model for heap bioleaching of chalcocite is investigated to identify and understand the effect of oxygen flow during air sparging. The study uses an existing one-dimensional model of liquid flow, bacterial transport (including attachment/detachment of bacteria to ore particles), and the depletion of a copper-sulphide, coupled with a two-dimensional model of gas flow in the heap. The CFD model includes the effects of oxygen and ferrous ion consumption, coupled with leaching of copper-sulphide via a shrinking core model. The model is used to investigate the two-dimensional effects of air flow in heap bioleaching with regard to oxygen limitation. Under oxygen limitation, copper leaching is found to occur from the bottom up, successively leaching the oxygenated regions and moving slowly up the heap to leach the whole bed. Some experimental validation is provided.

Download to your computer

Authors

M. J. Leahy
M. R. Davidson
Dept. Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, Australia. mailto:martin.leahy@csiro.au
M. P. Schwarz
Commonwealth Scientific and Industrial Research Organization, Division of Minerals, Clayton, Australia.

Published June 3, 2005. ISSN 1446-8735

References

  1. {AEA Technology, CFX4.4 Solver}. CFX4.4 On-line documentation. AEA Technology, Harwell Laboratory, Oxfordshire, UK, 2001.
  2. A. Al-Khlaifat and H. Arastoopur. Simulation of two-phase flow through low-permeability porous media. In AEA technology international user conference '97, 1997.
  3. R. W. Bartlett. Solution mining leaching and fluid recovery of minerals, 2nd ed., OPA, 1998.
  4. C. R. Bennett, M. Cross, T. N. Croft, J. L. Uhrie, C. R. Green, and J. E. Gebhardt. A comprehensive copper stockpile leach model: background and model formulation. In C. A. Young, A. W. Alfantazi, C. G. Anderson, D. B. Dreisinger, B. Harris, and A. James, editors, Hydrometallurgy 2003, pages 315--328. TMS, 2003.
  5. S. C. Bouffard and D. G. Dixon. Investigative study into the hydrodynamics of heap leaching processes. Met. Mat. Trans. B, 32B:763--776, 2001.
  6. S. C. Bouffard and D. G. Dixon. Mathematical modelling of pyritic refractory gold ore heap biooxidation: model development and isothermal column simulations. In C. A. Young, A. W. Alfantazi, C. G. Anderson, D. B. Dreisinger, B. Harris, and A. James, editors, Hydrometallurgy 2003, pages 275--288. TMS, 2003.
  7. D. G. Dixon. Heap leach modelling-the current state of the art. In C. A. Young, A. W. Alfantazi, C. G. Anderson, D. B. Dreisinger, B. Harris, and A. James, editors, Hydrometallurgy 2003, pages 289--314. TMS, 2003.
  8. D. G. Dixon and J. Petersen. Comprehensive modelling study of chalcocite column and heap bioleaching. In D. B. Dreisinger P. A. Riveros, D. G. Dixon and J. Menacho, editors, Copper 2003-Cobre 2003 Volume VI - Hydrometallurgy of Copper (Book 2), pages 493--515, 2003.
  9. B. Escobar, E. Jedlicki, J. Wiertz, and T. Vargas. A method for evaluating the proportion of free and attached bacteria in the bioleaching of chalcopyrite with Thiobaccilus ferrooxidans. Hydrometallurgy, 40:1--10, 1996.
  10. M. J. Leahy, P. Schwarz, and M. R. Davidson. A column bioleaching model for chalcocite: an investigation of oxygen limitation and bacterial inoculation on leaching. In BACMIN Proceedings, pages 41--47, Bendigo, Australia, 8-10 November 2004. AusIMM.
  11. G. Meruane and T. Vargas. Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5--7.0. Hydrometallurgy, 71:149--158, 2003.
  12. H. J. Neuburg, J. A. Castillo, M. N. Herrera, J. V. Wiertz, T. Vargas, and R. Badilla-Ohlbaum. A model for the bacterial leaching of copper sulphide ores in pilot-scale columns. Int. J. Min. Proc., 31:247--264, 1991.
  13. M. Sidborn and L. Moreno. Model for bacterial leaching of copper sulphides by forced aeration. Proceedings of the 15th International Biohydrometallurgy Symposium (IBS 2003), 2003.
  14. Y. Tan, J. T. Gannon, P. Baveye, and M. Alexander. Transport of bacteria in an aquifer sand: Experiments and model simulations. Wat. Resour. Res., 30(12):3243--3252, 1994.
  15. F. Zeballos, O. Barbosa Filho, and R. Jose de Carvalho. Mathematical modeling of the chemical and bacterial leaching of copper ores in stack. In Proceedings of the 15th International Biohydrometallurgy Symposium (IBS 2003), paper 32, 2003.