ANZIAM J. 46(E) pp.C1327--C1335, 2006.
Some remarks on the inverse eigenvalue problem for real symmetric Toeplitz matrices
N. Li |
Abstract
A theorem about the bounds of solutions of the Toeplitz Inverse Eigenvalue Problem is introduced and proved. It can be applied to make a better starting generator for iterative numerical methods. This application is tested through a short Mathematica program. Also an optimisation method for solving the Toeplitz Inverse Eigenvalue Problem with a global convergence property is presented. A global convergence theorem is proved.
Download to your computer
- Click here for the PDF article (175 kbytes) We suggest printing 2up to save paper; that is, print two e-pages per sheet of paper.
- Click here for its BiBTeX record
Authors
- N. Li
- Mathematics Discipline, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Melbourne, Australia. mailto:nli@swin.edu.au
Published January 6, 2006. ISSN 1446-8735
References
- Chu, M. T. and Golub, G. H., Structured inverse eigenvalue problems, Acta Numerica, 2001.
- Chu, M. T., On a Newton method for the inverse Toeplitz eigenvalue problem. http://www4.ncsu.edu/ mtchu/Research/Papers/itep.ps
- Garcia, C. B. and Li, T. Y., On the numbers of solutions to polynomial systems of equations, SIAM J. Numer. Anal., 17(4), 1980, 540--546.
- Gill, P., Murray, W. and Wright, M., Practical Optimization, page 100, Academic Press, 1981.
- Friedland, S., Nocedal, J. and Overton, M. L., The formulaton and analysis of numerical methods for inverse eigenvalue problems, SIAM J. Numer. Anal., 24(3), 1987, 634--667.
- Friedland, S., Inverse eigenvalue problems for symmetric Toeplitz matrices, SIAM J. Matrix Anal. Appl., 13(4), 1992, 1142--1153.
- Landau, H. J., The inverse eigenvalue problem for real symmetric Toeplitz matrices, J. Amer. Math. Soc., 7(3), 1994, 749--767.
- Laurie, D. P., A numerical approach to the inverse Toeplitz eigenproblem, SIAM J. Sci. Stat. Comput., 9(2), 1988, 401--405.
- Laurie, D. P., Initial values for the inverse Toeplitz eigenvalue problem, SIAM J. Sci. Stat. Comput., 22, 2001, 2239--2255.
- Li, N., A matrix inverse eigenvalue problem and its application, Linear Algebra And Its Applications, 266, 1997, 143--152.
- Li, N., and Chu, K-W. E., Designing the Hopfield neural network via pole assignment, Internat. J. Systems Sci., 25, 1994, 669--681.
- Li, N., An Inverse eigenvalue problem and feedback control, In May, R. L., Fitz-Gerald, G. F. and Grundy, I. H., editors, Proceedings of the 4th Biennial Engineering Mathematics and Applications Conference, Melbourne, Australia, pages 183--186. RMIT, 2000.
- Osborne, M. R., Nonlinear least squares---the Levenberg--Marquardt algorithm revisited. J. Austral. Math. Soc. Ser. B, 1976, 343--357.
- Powell, M. J. D., A hybrid method for nonlinear equations. In P. Rabinowitz, editor, Numerical methods for nonlinear equations, pages 87--114, Gordon and Breach, London, 1970.
- Trench, W. F., Numerical solution of the inverse eigenvalue problem for real symmetric Toeplitz matrices, SIAM J. Sci. Comput., 18(6), 1997, 1722--1736.