ANZIAM J. 46(E) ppC488--C504, 2005.

Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation

F. Liu

S. Shen

V. Anh

I. Turner

(Received 8 October 2004, revised 5 May 2005)

Abstract

The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order in (0,1). In this work, an explicit finite-difference scheme for TFDE is presented. Discrete models of a non-Markovian random walk are generated for simulating random processes whose spatial probability density evolves in time according to this fractional diffusion equation. We derive the scaling restriction of the stability and convergence of the discrete non-Markovian random walk approximation for TFDE in a bounded domain. Finally, some numerical examples are presented to show the application of the present technique.

Download to your computer

Authors

F. Liu
S. Shen
School of Mathematical Sciences, Xiamen University, Xiamen 361005, China. mailto:fwliu@xmu.edu.cn
V. Anh
I. Turner
School of Mathematical Sciences, Queensland University of Technology, G.P.O. Box 2434, Brisbane, Queensland 4001, Australia. mailto:f.liu@qut.edu.au

Published June 12, 2005. ISSN 1446-8735

References

  1. O. P. Agrawal, Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain, J. Nonlinear Dynamics 29, (2002), 145--155.
  2. R. Gorenflo, Yu. Luchko and F. Mainardi, Wright function as scale-invariant solutions of the diffusion-wave equation, J. Comp. Appl. Math. 118, (2000), 175--191.
  3. R. Gorenflo, F. Mainardi, D. Moretti and P. Paradisi, Time Fractional Diffusion: A Discrete Random Walk Approach [J], Nonlinear Dynamics 29, (2002), 129--143.
  4. F. Huang and F. Liu, The time fractional diffusion and advection-dispersion equation, ANZIAM J., 46, (2005), 317--330.
  5. F. Liu, V. Anh, I. Turner and P. Zhuang, Time fractional advection-dispersion equation, J. Appl. Math. Comp., (2003), 233--246.
  6. F. Liu, V. Anh and I. Turner, Numerical solution of space fractional Fokker--Planck equation, J. Comp. and Appl. Math., 166, (2004), 209--219.
  7. F. Liu, V. Anh, I. Turner and P. Zhuang, Numerical simulation for solute transport in fractal porous media, ANZIAM J. 45(E), (2004), 461--473.
  8. F. Liu, S. Shen, V. Anh and I. Turner, Detail analysis of an explicit conservative difference approximation for the time fractional diffusion equation, Technique Report 04, Xiamen University, China, 2004.
  9. I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
  10. W. R. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 30, (1989) 134--144.
  11. S. Shen and F. Liu, A computationally effective numerical method for the fractional-order Bagley--Torvik equation, Journal of Xiamen University (Natural Science), Vol. 45, No. 3, (2004), 306--311.
  12. G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, Clarendon Press, Oxford, (1985).
  13. W. Wyss, The fractional diffusion equation, J. Math. Phys. 27, (1986) 2782--2785.
  14. F. Mainardi, Yu. Luchko, and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and Applied Analysis, 4, (2001), 153--192.