ANZIAM J. 46(E) ppC426--C438, 2005.

Numerical techniques for linear and nonlinear eigenvalue problems in the theory of elasticity

Aliki D. Muradova

(Received 19 November 2004, revised 12 April 2005)

Abstract

Consider algorithms to solve eigenvalue problems for partial differential equations describing the bending of a von Karman elastic plate. Here we explore numerical techniques based on a variational principle, Newton's iterations and numerical continuation. The variational approach uses the Galerkin spectral method. First we study the linearized problem. Second, eigenfunctions of the nonlinear equations describing post-buckling behaviour of the von Karman plate are calculated. The plate is supposed to be totally clamped and compressed along its four sides. The basis functions in the variational procedure are trigonometric functions. They are chosen to match the boundary conditions. Effective computational techniques allow us to detect bifurcation points and to trace branches of solutions. Numerical examples demonstrate the efficiency of the methods. The proposed algorithms are applicable to similar problems involving elliptic differential equations.

Download to your computer

Authors

Aliki D. Muradova
The Mathematical Sciences Institute, The Australian National University, Canberra, Australia. mailto:Aliki.Muradova@maths.anu.edu.au

Published May 24, 2005. ISSN 1446-8735

References

  1. E. L. Allgower and K. Georg. Numerical continuation methods. Springer, Berlin, 1990.
  2. C. S. Chien, S. L. Chang and Z. Mei. Tracing the buckling of a rectangular plate with the Block GMRES method. J. of Comput. and Appl. Math., 136, pages 199--218, 2001. http://dx.doi.org/10.1016/S0377-0427(00)00611-7.
  3. C. S. Chien, S. Y. Gong and Z. Mei. Mode jumping in the von Karman equations. SIAM J. Sci. Comput., volume 22, No 4, pages 1354--1385, 2000. [Online] http://epubs.siam.org/sam-bin/dbq/article/30732.
  4. P. Ciarlet and P. Rabier. Les equations de von Karman. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
  5. K. Dossou and R. Pierre. A Newton-GMRES approach for the analysis of the postbuckling behavior of the solutions of the von Karman equations. SIAM J. Sci. Comput., volume 24, No 6, pages 1994--2012, 2003. [Online] http://epubs.siam.org/sam-bin/dbq/article/37614.
  6. D. L. Harrar and M. R. Osborne. Computing eigenvalues of ordinary differential equations. ANZIAM J., 44(E), pages C313--C334, 2003. [Online] http://anziamj.austms.org.au/V44/CTAC2001/Harr.
  7. E. J. Holder and D. G. Schaeffer. Boundary conditions and mode jumping in the von Karman's equations. SIAM, J. Math. Anal., 15, pages 446--458, 1984. http://locus.siam.org/SIMA/volume-15/art_0515034.html.
  8. D. G. Schaeffer and M. Golubitsky. Boundary conditions and mode jumping in the buckling of a rectangular plate. Comm. Math. Phys., 69, pages 209--236, 1979. URL
  9. T. S. Vashakmadze. The theory of anisotropic elastic plates. Kluwer Academic Publishers, Dortrecht, Boston, London, 1999.