ANZIAM J. 46(E) pp.C637--C657, 2005.

Higher order accuracy in the gap-tooth scheme for large-scale dynamics using microscopic simulators

A. J. Roberts

I. G. Kevrekidis

(Received 15 October 2004, revised 29 April 2005)

Abstract

We are developing a framework for multiscale computation which enables models at a ``microscopic'' level of description, for example Lattice Boltzmann, Monte--Carlo or Molecular Dynamics simulators, to perform modelling tasks at the ``macroscopic'' length scales of interest. The plan is to use the microscopic rules restricted to small patches of the domain, the ``teeth'', followed by interpolation to estimate macroscopic fields in the ``gaps''. The challenge begun here is to find general boundary conditions for the patches of microscopic simulators that appropriately connect the widely separated ``teeth'' to achieve high order accuracy over the macroscale. Here we start exploring the issues in the simplest case when the microscopic simulator is the quintessential example of a partial differential equation. In this case analytic solutions provide comparisons. We argue that classic high-order interpolation provides patch boundary conditions which achieve arbitrarily high-order consistency in the gap-tooth scheme, and with care are numerically stable. The high-order consistency is demonstrated on a class of linear partial differential equations in two ways: firstly, using the dynamical systems approach of holistic discretisation; and secondly, through the eigenvalues of selected numerical problems. When applied to patches of microscopic simulations these patch boundary conditions should achieve efficient macroscale simulation.

Download to your computer

Authors

A. J. Roberts
Dept. Maths & Computing, University of Southern Queensland, Toowoomba, Australia. mailto:aroberts@usq.edu.au
I. G. Kevrekidis
Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA. mailto:yannis@Princeton.edu

Published July 20, 2005. ISSN 1446-8735

References

  1. Vemuri Balakotaiah and Hsueh-Chia Chang. Hyperbolic homogenized models for thermal and solutal dispersion. SIAM J. Appl. Math., 63:1231--1258, 2003. http://epubs.siam.org/sam-bin/dbq/article/36886.
  2. J. Carr. Applications of centre manifold theory, volume 35 of Applied Math. Sci. Springer-Verlag, 1981.
  3. J. Carr and R. G. Muncaster. The application of centre manifold theory to amplitude expansions. {II}. {Infinite} dimensional problems. J. Diff. Eqns, 50:280--288, 1983.
  4. J. Cisternas, C. W. Gear, S. Levin, and I. G. Kevrekidis. Equation-free modeling of evolving diseases: Coarse-grained computations with individual-based models. Technical report, [http://arXiv.org/abs/nlin.AO/0310011], 2003.
  5. J. Dolbow, M. A. Khaleel, and J. Mitchell. Multiscale mathematics initiative: A roadmap. report from the 3rd {DoE} workshop on multiscale mathematics. Technical report, Department of Energy, USA, http://www.sc.doe.gov/ascr/mics/amr, December 2004.
  6. C. W. Gear, I. G. Kevrekidis, and C. Theodoropoulos. `Coarse' integration/bifurcation analysis via microscopic simulators: micro-galerkin methods. Computers and Chemical Engrg, 26:941--963, 2002.
  7. C. W. Gear, Ju Li, and I. G. Kevrekidis. The gap-tooth method in particle simulations. Phys. Lett. A, 316:190--195, 2003.
  8. Igor Jankovic, Aldo Fiori, and Gedeon Dagan. Effective conductivity of an isotropic heterogeneous medium of lognormal conductivity distribution. Multiscale Modeling and Simulation, 1:40--56, 2003. http://epubs.siam.org/sam-bin/dbq/article/40963.
  9. I. G. Kevrekidis, C. W. Gear, and G. Hummer. Equation-free: the computer-assisted analysis of complex, multiscale systems. A. I. Ch. E. Journal, 50:1346--1354, 2004.
  10. I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg, and K. Theodoropoulos. Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system level tasks. Comm. Math. Sciences, 1:715--762, 2003.
  11. J. Li, C. W. Gear P. G. Kevrekidis, and I. G. Kevrekidis. Deciding the nature of the coarse equation through microscopic simulation: an augmented {Lagrangian} approach. SIAM Multiscale Modeling and Simulation, 1:391--407, 2003. http://epubs.siam.org/sam-bin/dbq/article/41916.
  12. T. Mackenzie and A. J. Roberts. Holistic finite differences accurately model the dynamics of the {Kuramoto--Sivashinsky} equation. ANZIAM J., 42(E):C918--C935, 2000. http://anziamj.austms.org.au/V42/CTAC99/Mack.
  13. T. MacKenzie and A. J. Roberts. Holistic discretisation of shear dispersion in a two-dimensional channel. In K. Burrage and Roger B. Sidje, editors, Proc. of 10th Computational Techniques and Applications Conference CTAC-2001, volume 44, pages C512--C530, March 2003. http://anziamj.austms.org.au/V44/CTAC2001/Mack.
  14. G. W. Milton. Theory of Composites. Cambridge University Press, 2002. http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521781256.
  15. {National Physical Laboratory}. Modern Computing Methods, volume 16 of Notes on Applied Science. Her Majesty's Stationary Office, 1961.
  16. A. J. Roberts. Low-dimensional modelling of dynamics via computer algebra. Computer Phys. Comm., 100:215--230, 1997.
  17. A. J. Roberts. Holistic discretisation ensures fidelity to {Burgers'} equation. Applied Numerical Modelling, 37:371--396, 2001.
  18. A. J. Roberts. A holistic finite difference approach models linear dynamics consistently. Mathematics of Computation, 72:247--262, 2002. http://www.ams.org/mcom/2003-72-241/S0025-5718-02-01448-5.
  19. A. J. Roberts. A step towards holistic discretisation of stochastic partial differential equations. In Jagoda Crawford and A. J. Roberts, editors, Proc. of 11th Computational Techniques and Applications Conference CTAC-2003, volume 45, pages C1--C15, December 2003. http://anziamj.austms.org.au/V45/CTAC2003/Robe/home.html [December 14, 2003].
  20. A. J. Roberts. Analyse gap-tooth patch boundary conditions with {Reduce}. Technical report, http://www.sci.usq.edu.au/staff/aroberts/linpbc.red, September 2004.
  21. G. Samaey, I. G. Kevrekidis, and D. Roose. Damping factors for the gap-tooth scheme. In S. Attinger and P. Koumoutsakos, editors, Multiscale Modeling and Simulation, volume 39 of Lecture Notes in Computational Science and Engineering, pages 93--102. Springer--Verlag, 2004.
  22. G. Samaey, I. G. Kevrekidis, and D. Roose. The gap-tooth scheme for homogenization problems. SIAM Multiscale Modeling and Simulation, to appear.
  23. Dongbin Xiu and Ioannis G. Kevrekidis. Equation-free, multiscale computation for unsteady random diffusion. Technical report, [http://arXiv.org/abs/math.NA/0504273], 2005.
  24. Xinye Yue Zhiming Chen. Numerical homogenization of well singularities in the flow transport through heterogeneous porous media. Multiscale Modeling and Simulation, 1:260--303, 2003. http://epubs.siam.org/sam-bin/dbq/article/41332.