ANZIAM J. 46(E) ppC304--C319, 2005.

Using computational fluid dynamics to study the effect of contact angle on microdroplet deformation

G. Rosengarten

D. Harvie

J. Cooper--White

(received 27 October 2004, revised 21 March 2005)

Abstract

Computational fluid dynamics (CFD) is used to study the effect of contact angle on droplet shape as it moves through a contraction. A new non-dimensional number is proposed in order to predict situations where the deformed droplet will form a slug in the contraction and thus interact with the channel wall. We argue that droplet flow into a contraction is a useful method to ensure that a droplet will wet a channel surface without a trapped lubrication film. We demonstrate that when a droplet is larger than a contraction, capillary and Reynolds numbers, and fluid properties may not be sufficient to fully describe the droplet dynamics through a contraction. We show that with everything else constant droplet shape and breakup can be controlled simply by changing the wetting properties of the channel wall. CFD simulations with contact angles ranging from 30° to 150° shows that lower contact angles can induce droplet breakup while higher contact angles form contact-angle dependent shape slugs.

Download to your computer

Authors

G. Rosengarten
School of Electrical and Computer Engineering, RMIT University, Australia. mailto:gary.rosengarten@rmit.edu.au
D. Harvie
Dept. of Chemical and Biomolecular Engineering, University of Melbourne, Australia.
J. Cooper--White
Division of Chemical Engineering, University of Queensland, Australia.

Published April 28, 2005. ISSN 1446-8735

References

  1. S. Basu, K. Nandakumar, and J. Masliyah. A model for detachment of a partially wetting drop from a solid surface by shear flow. Journal of Colloid and Interface Science, 190:253--257, 1997. http://www.ingentaconnect.com/content/ap/cs/1997/00000190/00000001/art04856
  2. D. Boger. Viscoelastic flow through contractions. Ann. Rev. Fluid Mech., 19:157--182, 1987. http://dx.doi.org/10.1146/annurev.fl.19.010187.001105
  3. J. U. Brackbill, D. Kothe, and C. Zemach. A continuum method for modeling of surface tension,. J. Comp. Phys., 100:335--354, 1992.
  4. J. Diez, L. Kondic, and A. Bertozzi. Global models for moving contact lines. Phyiscal Review E, 63:011208--1--13, 2001.
  5. R. Dreyfus, P. Tabeling, and H. Willaime. Ordered and disordered patterns in two-phase flows in microchannels. Physical Review Letters, 90(14):144505--1, 2003.
  6. L. Erwin. Principles of laminar fluid/fluid mixing. In Chris Rauwendaal, editor, Mixing in Polymer Processing. Marcel Dekker, 1991.
  7. S. Guido, M. Simeione, and F. Greco. Deformation of a newtonian drop in a viscoelastic matrix under steady shear flow. experimental validation of slow flow theory. J. Non-Newtonian Fluid Mech, 114:65--82, 2003.
  8. J. W. Ha and L. G. Leal. An experimental study of drop deformation and extensional flow at high capillary number. Physics of fluids, 13(6):1568--1576, 2001. http://dx.doi.org/10.1063/1.1358306
  9. J. Hagedorn, N. Martys, and J. Doughlas. Breakup of a fluid thread in a confined geometry: droplet-plug transition, perturbation sensitivity, and kinetic stabilzation with confinement. Physical Review E, 69:056312--1--12, 2004.
  10. C. W. Hirt and B. D. Nichols. Volume of fluid (vof) method for the dynamics of free boundaries. Journal of Computational Physics, 39:201--225, 1981.
  11. S. R. Hodges, O. E. Jensen, and J. M. Rallison. The motion of a viscous drop through a cylindrical tube. J. Fluid Mech., 501:279--301, 2004. http://dx.doi.org/10.1017/S0022112003007213
  12. C. Kaliakatsos and S. Tsangaris. Motion of deformable drops in pipes and channels using navier-stokes equations. Int. J. Numer. Meth. Fluids, 34:609--626, 2000. http://www3.interscience.wiley.com/cgi-bin/abstract/75504241
  13. D. B. Kothe, W.J. Rider, J. Mosso, and J. S. Brock. Volume tracking of interfaces having surface tension in two and three dimensions. AIAA, pages 96--0859, 1996.
  14. M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, and J. Mostaghimi. Capillary effects during droplet impact on a solid surface. Physics of fluids, 8(3):650--659, 1996. http://dx.doi.org/10.1063/1.868850
  15. M. Renardy, Y. Renardy, and J. Li. Numerical simulation of moving contact line problems using a volume-of-fluid method. J. Comp. Phys., 171:343--263, 2001.
  16. W. J. Rider, D. B. Kothe, S. J. Mosso, and J. I. CerruttiHochstein. Accurate solution algorithms for incompressible multiphase fluid flows. AIAA, pages 95--0699, 1995.
  17. G. I. Taylor. The formation of emulsions in definable fields of flow. Proc. Roy. Soc., 146A:501--523, 1934.
  18. T. M. Tsai and M. J. Miksis. Dynamics of a drop in a constricted tube. J. Fluid Mechanics, 274:197--217, 1994.