ANZIAM J. 46(E) ppC260--C275, 2005.

Role of particle rotations and rolling resistance in a semi-infinite particulate solid indented by a rigid flat punch

Antoinette Tordesillas

John Peters

Maya Muthuswamy

(Received 11 October 2004, revised 10 March 2005)

Abstract

Particle rotations, and in particular, rolling resistance are known to have a dominant influence on the macroscopic behaviour of particulate materials. We examine the influence of these factors in the constitutive response of a semi-infinite material to indentation by a rigid flat punch on the material boundary. Extensive particle rotations are found to occur near the edges of the punch where stress concentrations exist, and from where plastic strains which localise into so-called shear bands emanate. The effects of rolling resistance are found to have a significant influence on the load-deflection characteristics of the punch.

Download to your computer

Authors

Antoinette Tordesillas
Department of Mathematics and Statistics, University of Melbourne 3010, Australia. mailto:atordesi@ms.unimelb.edu.au
John Peters
U. S. Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, U. S. A.
Maya Muthuswamy
Department of Mathematics and Statistics, University of Melbourne 3010, Australia. mailto:mayadm@gmail.com

Published April 27, 2005. ISSN 1446-8735

References

  1. P. A. Cundall. {A discrete future for numerical modeling}. Discrete Element Methods: Numerical Modeling of Discontinua, ASCE Geotechnical Special Publication No. 117, 3--4, 2002.
  2. P. A. Cundall, O. D. L. Strack. A discrete numerical model for granular assemblies. Geotechnique, 29:47--65, 1979.
  3. W. Ehlers. Foundations of multiphasic and porous materials. In W. Ehlers, J. Bluhm, editors, Porous media - Theory, experiments and numerical applications, Springer-Verlag, Berlin, 2002.
  4. B. Gardiner, A. Tordesillas. The effects of particle size distribution based on a homogenisation scheme for high-resolution analysis of three-dimensional micropolar media. Powder Technology, in review.
  5. B. Gardiner, A. Tordesillas. Micromechanics of shear bands. International Journal of Solids and Structures, 41:5885--5901, 2004. http://dx.doi.org/10.1016/j.ijsolstr.2004.05.051
  6. G. M. L. Gladwell. Contact Problems in the Classical Theory of Elasticity, Sijthoff and Noordhoff, The Netherlands, 1980.
  7. R. Hill. The Mathematical Theory of Plasticity, Oxford University Press, London, 1950.
  8. K. Iwashita, M. Oda. Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technology, 109:192--205, 2000. http://dx.doi.org/10.1016/S0032-5910(99)00236-3
  9. K. L. Johnson. Contact Mechanics. Cambridge University Press, 1985.
  10. Y. Liu, A. E. Kerdok, R. D. Howe. A nonlinear finite element model of soft tissue indentation. ISMS, 67--76, 2004.
  11. M. Oda, K. Iwashita. Study on couple stress and shear band development in granular media based on numerical simulation analyses. International Journal of Engineering Science, 38:1713--1740, 2000. http://dx.doi.org/10.1016/S0020-7225(99)00132-9
  12. M. Oda, H. Kazama. Micro-structure of shear band and its relation to the mechanism of dilatancy and failure of granular soils. Geotechnique, 48(4):465--481, 1998.
  13. M. Oda, J. Konishi, S. Nemat--Nasser. Experimental micro-mechanical evaluation of strength of granular materials: effect of particle rolling. Mechanics of Materials 1, 267--283, 1982. http://dx.doi.org/10.1016/0167-6636(82)90027-8
  14. Particle Visualisation Software User Manual, University of Melbourne Software Engineering Department, 2003.
  15. A. Tordesillas, J. Peters, B. Gardiner. Insights on 1D localisation theory and micromechanical constitutive laws. Geotechnique, 54:1--4, 2004. http://dx.doi.org/10.1680/geot.54.5.327.46727
  16. A. Tordesillas, J. Peters, B. Gardiner. Shear band evolution and accumulated microstructural development in Cosserat media. International Journal for Numerical and Analytical Methods in Geomechanics, 28:981--1010, 2004. http://dx.doi.org/10.1002/nag.343
  17. A. Tordesillas, J. Shi. Frictional indentation of dilatant granular materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 455 (1981): 261--283, 1999.
  18. A. Tordesillas, S. Walsh. Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technology, 124(1--2):106--111, 2002. http://dx.doi.org/10.1016/S0032-5910(01)00490-9
  19. S. D. C. Walsh, A. Tordesillas. Finite element methods for micropolar models of granular materials. Applied Mathematical Modelling, submitted.
  20. S. D. C. Walsh, A. Tordesillas. A thermomechanical approach to the development of micropolar constitutive models for granular media. Acta Mechanica, 167(3--4):145--169, 2004. http://dx.doi.org/10.1007/s00707-003-0072-z