ANZIAM J. 46(E) ppC336--C350, 2005.

A thermomechanical formulation of finite element schemes for micropolar continua

S. D. C. Walsh

A. Tordesillas

(received 19 November 2004, revised 7 March 2005)

Abstract

Recent studies highlighted the advantages of the thermomechanical approach for developing models of material behaviour. This approach ensures compliance with thermodynamical laws since constitutive relations are derived from a consideration of thermodynamical potentials. Interestingly, the same thermomechanical techniques can also be used to formulate the finite element models used to implement these constitutive relations. Thus the key advantage of this type of finite element formulation is that a direct link to the underlying physics of the problem is extended through to the model's implementation. Here, we show how the thermomechanical approach can be applied to finite element schemes for models based on micropolar continuum theory. Material points that make up a micropolar continuum possess rotational degrees of freedom, in addition to the conventional translational degrees of freedom. Hence, the equations governing boundary value problems for this class of materials differ from those of their classical counterparts---both from the viewpoint of the constitutive law and the governing conservation laws. We outline the development of finite element schemes for elastic and plastic micropolar materials using the thermomechanical approach. The analysis indicates that while the traditional Galerkin method admits a range of weighting functions, the second law of thermodynamics provides an additional constraint that narrows the choice of admissible functions.

Download to your computer

Authors

S. D. C. Walsh
A. Tordesillas
Dept. Mathematics & Statistics, The University of Melbourne, Melbourne, Australia. mailto:atordesi@ms.unimelb.edu.au

Published May 6, 2005. ISSN 1446-8735

References

  1. D. P. Adhikary, A. V. Dyskin, A continuum model of layered rock masses with non-associative joint plasticity, Int. J. Numer. Anal. Meth. Geomech. 22 (1998): 245--261. http://www3.interscience.wiley.com/cgi-bin/abstract/3335
  2. I. F. Collins, G. T. Houlsby, Applications of thermomechanical principles to the modeling of geotechnical materials, Proc. R. Soc. London, Ser. A 453 (1997):1975--2001. http://dx.doi.org/10.1098/rspa.1997.0107
  3. A. C. Eringen, Theory of micropolar elasticity, In: Fracture---An advanced treatise Vol. II, (Liebowitz, H., ed.), Chapter 7, pp.621--693, Academic Press, New York, 1968.
  4. W. Ehlers, W. Volk, On shear band localization phenomena of liquid-saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations, Mech. Cohes.-Fric. Mat. 2 (1997): 301--320. http://www3.interscience.wiley.com/cgi-bin/abstract/15530
  5. G. T. Houlsby, A. M. Puzrin, A thermomechanical framework for constitutive models for rate-independent dissipative materials, Int. J. Plasticity 16 (2000): 1017--1047.
  6. R. Lakes, Experimental micro mechanics methods for conventional and negative poisson ratio cellular solids as cosserat continua, J. Engineering Materials and Technology (Transactions of the ASME) 113 (1)(1991): 148--155
  7. J. Lubliner, Plasticity Theory, New York, Macmillan Publishing Company 1990.
  8. P. R. Onck, Cosserat modeling of cellular solids, Comptes Rendus Mecanique, 330 (11)(2002): 717--722.
  9. A. Tordesillas, S. D. C. Walsh, B. S. Gardiner, Bridging the length scales: micromechanics of granular media, BIT Numerical Mathematics 44 (2004): 539--556. http://dx.doi.org/10.1023/B:BITN.0000046817.60322.ed
  10. A. Tordesillas, S. D. C. Walsh, Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media, Powder Tech. 124 (2002): 106--111. http://dx.doi.org/10.1016/S0032-5910(01)00490-9
  11. A. Tordesillas, S. D. C. Walsh, Analysis of deformation and localization in thermomicromechanical Cosserat models of granular media, Powders and Grains 2005, in press. http://www.ica1.uni-stuttgart.de/ pg2005/abstracts/Tordesillas.html
  12. K. C. Valanis, A gradient theory of internal variables, Acta Mech. 116 (1996): 1--14.
  13. S. D. C. Walsh, A. Tordesillas, A thermomechanical approach to the development of micropolar constitutive models of granular media, Acta Mech. 167 (3--4) (2004): 145--169.
  14. H. Ziegler, An Introduction to Thermomechanics, 2nd ed., North Holland, Amsterdam, 1983.