ANZIAM J. 46(E) ppC409--C425, 2005.

A new adaptive restart for GMRES($m$) method

Linjie Zhang

Takashi Nodera

(Received 27 October 2004, revised 13 April 2005)

Abstract

GMRES($m$) is a Krylov subspace method for solving nonsymmetric linear systems of equations. The difficulty of this method lies in choosing the appropriate restart cycle $m$. We propose a new strategy for the adaptive restart for GMRES($m$) which is based on using the difference of the Ritz and harmonic Ritz values. We also report on numerical experiments which show that this new approach is both effective and robust.

Download to your computer

Authors

Linjie Zhang
School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, 223-8522, Japan. mailto:zhang@math.keio.ac.jp
Takashi Nodera
Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, 223-8522, Japan. mailto:nodera@math.keio.ac.jp

Published May 24, 2005. ISSN 1446-8735

References

  1. E. Anderson et al. LAPACK Users Guide. SIAM, Philadelphia 1992.
  2. W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenvalue problem. Quart. Appl. Math., 9, 17--29, 1951.
  3. K. Burrage and J. Erhel. On the performance of various adaptive preconditioned GMRES strategies. Numer. Linear Algebra Appl., 5, 101--121, 1998
  4. J. Erhel. K. Burrage and B. Pohl. Restarted GMRES preconditioned by Deflation. J. Comp Appl. Math., 69, 303--318, 1996.
  5. S. Goossens and D. Roose. Ritz and harmonic Ritz values and the convergence of FOM and GMRES. Numer. Linear Algebra Appl., 6, 281--293, 1999.
  6. M. Habu and T. Nodera. GMRES(m) Algorithm with Changing the Restart Cycle Adaptively. Proceedings of ALGORITMY 2000, Conference on Scientific Computing., 254--263, 2000.
  7. W. Joubert. Lanczos methods for the solution of nonsymmetric systems of linear equations. SIAM J. Matrix Anal. Appl., 13, 926--943, 1992.
  8. R. B. Morgan. A restarted GMRES method augmented with eigenvectors. SIAM J. Matrix Anal. Appl., 16, 1154--1171, 1995. http://locus.siam.org/SIMAX/volume-16/art_0616077.html
  9. R. B. Morgan. Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations. SIAM J. Matrix Anal. Appl., 21(4), 1112--1135, 2000. http://epubs.siam.org/sam-bin/dbq/article/32136
  10. K. Moriya. and T. Nodera. The DEFLATED-GMRES($m,k$) method with switching the restart frequency dynamically. Numer. Linear Algebra Appl., 7, 569--584, 2000.
  11. K. Moriya and T. Nodera. The GMRES($\le m_{\mathop {\relax \kern \z@ \mathgroup \symoperators max}\nmlimits@ }$) method using the convergence test of the residual norm. J. of IPSJ, 45, 2055--2067, 2004.
  12. Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7, 856--869, 1986. http://locus.siam.org/SISC/volume-07/art_0907058.html
  13. G. L. G. Sleijpen and H. A. Van der Vorst. A Jacobi--Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl., 17, 401--425, 1996. http://locus.siam.org/SIMAX/volume-17/art_0617022.html
  14. N. Tuno and T. Nodera. The speedup of the GMRES(m) method using the early restarting procedure. J. of IPSJ, 40, 1760--1773, 1999.