ANZIAM J. 47(EMAC2005) pp.C200--C215, 2006.

Internal symmetric waves of two-layer fluids over an obstruction

H. J. Kim

W. S. Bae

J. W. Choi

(Received 28 October 2005; revised 26 July 2006)

Abstract

We study two-dimensional capillary-gravity waves on the interface between two immiscible, inviscid and incompressible fluids of different constant densities bounded by two horizontal rigid boundaries with small obstructions with compact support. A forced modified Korteweg--de Vries equation is derived as a model equation without assuming that the fluid is of constant depth at far upstream. Various new types of steady solutions have been obtained numerically.

Download to your computer

Authors

H. J. Kim
W. S. Bae
J. W. Choi
Department of Mathematics, Korea University, Seoul, 136-701, Korea. mailto:jchoi@korea.ac.kr

Published August 21, 2006. ISSN 1446-8735

References

  1. S. P. Shen, M. C. Shen, and S. M. Sun, A model equation for steady surface waves over a bump. J. Eng. Math. 23 (1989) 315--323. http://dx.doi.org/10.1007/BF00128905
  2. J. W. Choi, S. M. Sun, and M. C. Shen, Steady capillary-gravity waves on the interface of two-layer fluid over an obstruction-forced modified K-dV equation. J. Eng. Math. 28 (1994) 193--210. http://dx.doi.org/10.1007/BF00058436
  3. J. W. Choi, S. M. Sun, and M. C. Shen, Internal capillary-gravity waves of a two layer fluid with free surface over an obstruction-Forced Extened K-dV Equation. Phys. Fluids. A 8 (1996) 397--404. http://dx.doi.org/10.1063/1.868793
  4. J. W. Choi, D. Ahn, C. H. Lim and S. Park, Symmetric surface waves over a bump. J. Korean Math. Soc. 6 (2003) 1051--1060. URL