ANZIAM J. 47(EMAC2005) pp.C776--C802, 2007.
Fluid drop shape determination by the Rayleigh--Ritz minimization method
F. P.-A. Cortat | S. J. Miklavcic |
Abstract
The Rayleigh--Ritz (RR) method is well known as a means of minimizing energy functionals. Despite this, the technique most often employed in practice for minimizing a functional is the numerical solution of the Euler--Lagrange (EL) equations derived from the energy functional by variational minimization. In this article we employ the RR method specifically to determine the equilibrium shape of a fluid drop interface deformed by externally applied surface stresses and compare the results with numerical solution of the EL equations. We give examples of conditions where the RR method is superior in terms of simplicity and accuracy to the numerical EL solution, as well as conditions under which the method is less reliable.
Download to your computer
- Click here for the PDF article (433 kbytes) We suggest printing 2up to save paper; that is, print two e-pages per sheet of paper.
- Click here for its BiBTeX record
Authors
- F. P.-A. Cortat
- S. J. Miklavcic
- Department of Science and Technology, Linkoping University, Campus Norrkoping, S-601 74, Norrkoping, Sweden. mailto:freco@itn.liu.se
Published June 26, 2007. ISSN 1446-8735
References
- H.-J. Butt, J. Colloid Interface Sci. 166, 109 (1994).
- W. A. Ducker, Z. Xu and J. N. Israelachvili, Langmuir 10, 3279 (1994).
- M. L. Fielden, R. A. Hayes and J. Ralston, Langmuir 12, 3721 (1996).
- S. Basu and M. M. Sharma, J. Colloid Interface Sci. 181, 443 (1996).
- P. G. Hartley, F. Grieser, P. Mulvaney and G. W. Stevens, Langmuir 15, 7282 (1999).
- S. A. Nespolo, D. Y. C. Chan, F. Grieser, P. G. Hartley and G. W. Stevens, Langmuir 19, 2124 (2003).
- R. G. Horn, D. J. Bachmann, J. N. Connor and S. J. Miklavcic, J. Phys.: Condens. Matter 8, 9483 (1996).
- J. N. Connor, Measurement of Interactions Between Solid and Fluid Surfaces, Doctoral Thesis: University of South Australia, 2001, ISBN 0-868039152.
- J. N. Connor, and R. G. Horn, Langmuir 17, 7194 (2001).
- J. N. Connor and R. G. Horn, Rev. Sci. Inst. 74, 4601 (2003).
- N. Chen, T. Kuhl, R. Tadmor, Q. Lin and J. Israelachvili, Phys. Rev. Lett. 92, 024501:1-4 (2004).
- M. L. Forcada, N. R. Arista, A. Gras-Marti, H. M. Urbassek, and R. Garcia-Molina, Phys. Rev. B 44, 8226 (1991).
- S. J. Miklavcic, R. G. Horn and D. J. Bachmann J. Phys. Chem. 99, 16357 (1995).
- S. J. Miklavcic Phys. Rev. E 54, 561 (1996).
- D. Bachmann, and S. J. Miklavcic, Langmuir 12, 4197 (1996).
- S. J. Miklavcic Phys. Rev. E 57, 561 (1998).
- D. Y. C. Chan, R. R. Dagastine and L. R. White J. Colloid Interface Sci. 236, 141 (2001).
- D. E. Aston and J. C. Berg, J. Colloid Interface Sci. 235, 162 (2001).
- D. Bhatt, J. Newman and C. J. Radke, Langmuir 17, 116 (2001).
- S. J. Miklavcic and P. Attard, J. Phys. A: Math. Gen. 34, 7849 (2001).
- P. Attard, and S. J. Miklavcic, Langmuir 17, 8217 (2001).
- D. C. Bardos, Surface Science 517, 157 (2002).
- R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience Publishers Inc., New York, 1989) Vol. 1.