ANZIAM J. 47(EMAC2005) pp.C152--C167, 2006.

Materially-isospectral congruent membranes

H. P .W. Gottlieb

(Received 6 October 2005; revised 18 July 2006)

Abstract

Materially-isospectral congruent membranes are membranes which have the same shape but different structure, that is different densities, yet they possess the same vibration frequency spectrum. Some approaches to finding such systems are described, and explicit formulae are presented for some annular and circular membranes. The results are numerically verified.

Download to your computer

Authors

H. P .W. Gottlieb
School of Science, Griffith University, Nathan, Queensland, Australia. mailto:H.Gottlieb@griffith.edu.au

Published August 1, 2006. ISSN 1446-8735

References

  1. M. Kac. Can one hear the shape of a drum? American Mathematical Monthly, 73 (4, Part 2):1--23, 1966.
  2. S. J. Chapman. Drums that sound the same. American Mathematical Monthly, 102:124--138, 1995.
  3. H. P. W. Gottlieb. Axisymmetric isospectral annular plates and membranes. IMA Journal of Applied Mathematics, 49:185--192, 1992. http://dx.doi.org/10.1093/imamat/49.2.185
  4. A. Gray, G. B. Mathews and T. M. MacRobert. A treatise on Bessel functions and their applications to physics (2nd edition). Dover, New York, 1966.
  5. E. B. Saff and A. D. Snider. Fundamentals of Complex Analysis for Mathematics, Science and Engineering. Prentice--Hall, Englewood Cliffs, 1976.
  6. H. P. W. Gottlieb. Density distribution for isospectral circular membranes. SIAM Journal on Applied Mathematics, 48:948--951, 1988.
  7. H. P. W. Gottlieb. Isospectral circular membranes. Inverse Problems, 20:155--161, 2004. http://dx.doi.org/10.1088/0266-5611/20/1/009
  8. G. M. L. Gladwell. Inverse Problems in Vibration (2nd edition). Kluwer, Dordrecht, 2004.
  9. R. Courant and D. Hilbert. Methods of Mathematical Physics, Volume I. Wiley, New York, 1953.