ANZIAM J. 47(EMAC2005) pp.C339--C354, 2006.

A heat transfer model describing burns to the skin from automotive airbags

G. N. Mercer

H. S. Sidhu

(Received 4 January 2006; revised 12 August 2006)

Abstract

Automotive airbag usage is increasing with multiple airbags being fitted to many vehicles. Their ability to reduce morbidity associated with vehicle crashes is well documented; however, airbags have been identified as causing injuries in some instances. These injuries include abrasions, contusions, lacerations, and burns (thermal and chemical). Here we concentrate on the thermal burns due to contact with the hot expelled gases from the airbag or prolonged contact with the hot airbag itself. A heat transfer model is used to predict the likelihood and severity of these burns. It is shown that direct contact with high temperature gases venting from the airbag can indeed lead to burns and that burns from contacting the hot airbag material are possible but far less likely to occur in a correctly functioning airbag. These findings are supported by anecdotal evidence in the medical literature.

Download to your computer

Authors

G. N. Mercer
H. S. Sidhu
School of Physical, Environmental and Mathematical Sciences, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600, Australia. mailto:g.mercer@adfa.edu.au

Published October 3, 2006. ISSN 1446-8735

References

  1. R. E. Antosia, R. A. Partridge, and A. S. Virk. Air bag safety. Annals of Emergency Medicine, 25:794--798, 1995. http://dx.doi.org/10.1016/S0196-0644(95)70210-5.
  2. S. Barry, S. Ginpil, and T. O'Neill. The effectiveness of airbags. Accident Analysis and Prevention, 31:781--787, 1999. http://dx.doi.org/10.1016/S0001-4575(99)00041-X.
  3. A. M. Baruchin, I. Jakim, L. Rosenberg, and O. Nahlieli. On burn injuries related to airbag deployment. Burns, 25:49--52, 1999. http://dx.doi.org/10.1016/S0305-4179(98)00110-7.
  4. P. Cummings, B. McKnight, F. P. Rivara, and D.C. Grossman. Association of driver air bags with driver fatality: a matched cohort study. BMJ, 324:1119--1122, 2002.
  5. K. R. Diller. Modeling thermal skin burns on a personal computer. Journal of Burn Care and Rehabilitation, 19:420--429, 1998.
  6. Dupont automotive. http://www.automotive.dupont.com.
  7. Leonard Evans. Traffic safety. Science Serving Society, 2004. http://www.scienceservingsociety.com/traffic-safety.htm
  8. {FlexPDE}\texttrademark . http://www.pdesolutions.com.
  9. I. Hendrickx, L. L. Mancini, M. Guizzardi, and M. Monti. Burn injury secondary to air bag deployment. Journal of the American Academy of Dermatology, 46:S25--6, 2002. http://dx.doi.org/10.1016/S0190-9622(02)70226-0.
  10. F. C. Henriques. Studies of thermal injury {V}. {T}he predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Archives of Pathology, 43:489--502, 1947.
  11. M. V. Jernigan, A. L. Rath, and S. M. Duma. Analysis of burn injuries in frontal automobile crashes. Journal of Burn Care and Rehabilitation, 25:357--362, 2004.
  12. S. C. Jiang, N. Ma, H. J. Li, and X. X. Zhang. Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns, 28:713--717, 2002. http://dx.doi.org/10.1016/S0305-4179(02)00104-3.
  13. R. Kent, D. C. Viano, and J. Crandall. The field performance of frontal airbags: A review of the literature. Traffic Injury Prevention, 6:1--23, 2005. http://dx.doi.org/10.1080/15389580590903131.
  14. H. Martin. Heat and mass transfer between impinging jets and solid surfaces. Advances in Heat Transfer, 13:1--60, 1977.
  15. F. Masaki. A new category of contact burn resulting from air bag infusion. Burns, 31:118--119, 2005. http://dx.doi.org/10.1016/j.burns.2004.07.013
  16. Matweb: Material property data. http://www.matweb.com.
  17. G. McGwin, J. Metzger, J. Alonso, and L. Rue. The association between occupant restraint systems and risk of injury in frontal motor vehicle collisions. The Journal of Trauma, 54:1182--1187, 2003. URL
  18. E. Y. K. Ng and L. T. Chua. Comparison of one- and two-dimensional programmes for predicting the state of skin burns. Burns, 28:27--34, 2002. http://dx.doi.org/10.1016/S0305-4179(01)00066-3.
  19. H. H. Pennes. Analysis of tissue and arterial blood temperatures in resting human forearm. Journal of Applied Physiology, 1:93--122, 1948. http://jap.physiology.org/cgi/reprint/1/2/93
  20. D. A. Torvi and J. D. Dale. A finite element model of skin subjected to a flash fire. Journal of Biomechanical Engineering, 116:250--255, 1994.
  21. Y. Tsuneyuki, N. Gozo, F. Masaki, and M. Osamu. Facial contact burn caused by air bag deployment. Burns, 29:189--190, 2003. http://dx.doi.org/10.1016/S0305-4179(02)00286-3.
  22. D. Ulrich, N. Ernst-Magnus, P. Fuchs, and N. Pallua. Burn injuries caused by air bag deployment. Burns, 27:196--199, 2001. http://dx.doi.org/10.1016/S0305-4179(00)00091-7.
  23. L. A. Wallis and I. Greaves. Injuries associated with airbag deployment. Emergency Medicine Journal, 19:490--493, 2002. http://dx.doi.org/10.1136/emj.19.6.490
  24. P. L. Zador and M. A. Ciccone. Automobile driver fatalities in frontal impacts: air bags compared with manual belts. American Journal of Public Health, 83:661--666, 1993. http://www.ajph.org/cgi/content/abstract/83/5/661