ANZIAM J. 47(EMAC2005) pp.C404--C418, 2006.

Computer simulation of polymethylmethacrylate bone cement flow through femoral canal and cancellous bone

S. Srimongkol

B. Wiwatanapataphee

Y. H. Wu

(Received 28 October 2005; revised 18 August 2006)

Abstract

Polymethylmethacrylate bone cements have been widely used in orthopaedic surgery for the fixation of artificial joints such as hip replacement. Understanding the flow of cement is crucial to the success of the process, as the cement flow determines the final shape of the filling and consequently the strength and durability of the structure. A mathematical model based on the finite element method is developed to simulate the flow of cement through femoral canal and cancellous bone. The cement is assumed as a power law non-Newtonian fluid and its flow in femoral canal is governed by the non-linear Navier--Stokes equations. The cancellous bone is modelled as a porous media and the Brinkman equations are used to describe the flow of cement through the bone. Based on the model developed, various numerical experiments were carried out to investigate the influence of cement property and surgical conditions on flow pattern, pressure distribution and shear rate.

Download to your computer

Authors

S. Srimongkol
B. Wiwatanapataphee
Dept. of Mathematics, Faculty of Science, Mahidol University, Bangkok, Thailand. mailto:scbww@mahidol.ac.th
Y. H. Wu
Dept. of Mathematics and Statistics, Curtin Univ. of Tech., Western Australia. mailto:yhwu@maths.curtin.edu.au

Published October 23, 2006. ISSN 1446-8735

References

  1. P. H. Adegbile, B. Russery, L. Taylor, J. Tong. Failure of an uncemented acetabular prosthesis a case study, Engineering Failure Analysis, 13(1), 2006, 163--169.
  2. G. Baroud, F. B. Yahia. A finite element rheological model for polymethylmethacrylate flow: analysis of the cement delivery in vertebroplasty, Prog. Instn Mech. Engrs Part H: J. Engineering in Medicine, 218, 2004.
  3. Armand J. Beaudoin, William M. Mihalko, William R. Krause. Finite element modelling of polymethylmethacrylate flow through cancellous bone, J. Biomechanics 24(2), 1991, 127--136.
  4. S. L. Bevill, G. R. Bevill, J. R. Penmets, A. J. Petrella, P. J. Rullkoetter. Finite element simulation of early creep and ear in total hip arthroplasty, J Biomech, 38(12), 2005, 2365--2374.
  5. M. Bohner, B. Gasser, G. Baroud, P. Heini. Theoretical and experimental model to describe the injection of a polymethymethacrylate cement into a porous structure, Biometerials 24, 2003, 2721--2730.
  6. Hanspeter Frei, Mohamed S. Gadala, Bassam A. Masri, Clive P. Duncan, Thomas R. Oxland. Cement flow during impaction allografting: a finite element analysis, Journal of Biomechanics, 39(3), 2006, 493--502.
  7. Michael J. Funk, Alan S. Litsky. Effect of cement modulus on the shear properties of the bone-cement interface, Biomaterials 19, 1998, 1561--1567.
  8. Do-Gyoon Kim, Mark A. Miller, Kenneth A. Mann. A fatigue damage model for the cement-bone interface, Journal of Biomechanics, 37, 2004, 1505--1512.
  9. A. B. Lennon, P. J. Prendergast. Residual stress due to curing can initiate damage in porous bone cement: experimental and theoretical evidence. Journal of Biomehanics 35(3), 2002, 311--321.
  10. A. W. McCaskie, M. R. Barnes, E. Lin, W. M. Harper, P. J. Gregg. Cement pressurisation during hip replacement, Journal of Bone and Joint Surgery, 79(3), 1997, 379--384.
  11. A. M. R. New, K. E. Tanner. In vivo measurement of acetabular cement pressurization using a simple new design of cement pressurizer, The Journal of Arthorplasty, 17(7), 1999.
  12. B. Peter, N. Ramaniraka, L. R. Pakotomanana, P. Y. Zambelli, D. P. Pioletti. Peri-implant bone remodeling after total hip replacement combind with systemic alendronate treatment: a finite element analysis, Computer Methods in Biomechanics and Biomedical Engineering, 7(2), 2004, 73--78.
  13. M. A. Perez, J. M. Garcia, M. Doblare. Analysis of the debonding of the stem-cement interface in intramedullary fixation using a non-linear fracture mechanics approach, Engineering Fracture Mechanics, 72, 2005, 1125--1147.
  14. M. Stanczyk. Study on modelling of PMMA bone cement polymerisation. Journal of Biomechanics, 38, 2005, 1397--1403.
  15. A. W. L. Turner, R. M. Gillies, R. Sekel, P. Morris, W. Bruce, W. R. Walsh. Computational bone remodelling simulations and comparisons with DEXA Results, Journal of Orthopaedic Research 23, 2005, 705--712.