ANZIAM J. 47(EMAC2005) pp.C873--C893, 2007.

Different numerical techniques for the solution of transcendental eigenvalue problem in transmission line bundles

Himanshu Verma

Peter Hagedorn

(Received 24 April 2006; revised 13 May 2007)

Abstract

The problem of a bundled transmission line attached with many spacer dampers is formulated by considering the conductor as a continuous system. The formulation results in a complex transcendental eigenvalue problem (TEVP), which presents several numerical difficulties. Some approaches towards solving the TEVP and their respective difficulties in getting the solutions are discussed in detail. The solution of the TEVP gives the necessary input data for applying the energy balance, which is used in order to obtain the actual vibration amplitudes of the transmission line conductors.

Download to your computer

Authors

Himanshu Verma
Dynamics and Vibrations Group, Department of Mechanical Engineering, Technische Universitat Darmstadt, Hochschulstrasse-1, D-64289, Darmstadt, Germany. mailto:verma@dyn.tu-darmstadt.de
Peter Hagedorn

Published July 20, 2007. ISSN 1446-8735

References

  1. EPRI. Transmission Line Reference Book, Wind Induced Conductor Motion. Palo Alto, California: Electrical Power Research Institute, 1979.
  2. P. Hagedorn. {On the Computation of Damped Wind Excited Vibrations of Overhead Transmission Lines}. Journal of Sound and Vibration, 83(2):253--271, 1982. doi:10.1016/S0022-460X(82)80090-4
  3. H. Verma and P. Hagedorn. Wind induced vibrations of long electrical overhead transmission line spans: A modified approach. Wind and Structures, 8(2):89--106, March 2005. http://technopress.kaist.ac.kr/journal/container/was/was8_2_container.jsp?order=1
  4. K. Anderson and P. Hagedorn. {On the Energy Dissipation in Spacer-Dampers in Bundled Conductors of Overhead Transmission Lines}. Journal of Sound and Vibration, 180(4):539--556, 1995. doi:10.1006/jsvi.1995.0099
  5. R. B. Lehoucq and D. C. Sorensen. Deflation techniques for an implicitly restarted Arnoldi iteration. {SIAM} J. Matrix Anal. Appl., 17(4):789--821, 1996. doi:10.1137/S0895479895281484
  6. R. B. Lehoucq, D. C. Sorensen, and C. Yang. Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. ARPACK User's Guide, SIAM, 1998. http://www.ec-securehost.com/SIAM/SE06.html
  7. J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997. http://www.ec-securehost.com/SIAM/ot56.html
  8. R. J. Radke. A Matlab Implimentation of the Implicitly Restarted Arnoldi Method for Solving Large-Scale Eigenvalue Problems. PhD thesis, Department of Computational and Applied Mathematics, Rice University, Houston, Texas, 1996. http://citeseer.ist.psu.edu/radke96matlab.html
  9. S. S. Ranmale. Solution of transcendental eigenvalue problem in overhead conductors. Master's thesis, Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India, 1996.
  10. D. R. Fokkema, G. L. G. Sleijpen, and H. A. Van der Vorst. Jacobi--Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput., 20(1):94--125, 1998. doi:10.1137/S1064827596300073
  11. G. L. G. Sleijpen, H. A. Van der Vorst, and Ellen Meijerink. Efficient expansion of subspaces in the {Jacobi-Davidson} method for standard and generalized eigenproblems. Electronic Transactions on Numerical Analysis, 7:75--89, 1998. http://etna.mcs.kent.edu/vol.7.1998/pp75-89.dir/pp75-89.html
  12. G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, London, 1989. http://www.press.jhu.edu/books/title_pages/1956.html
  13. P. Hagedorn, N. Mitra, and T. Hadulla. Vortex-Excited Vibrations in Bundled Conductors: A Mathematical Model. Journal of Fluids and Structures, 16(7):843--854, 2002. 10.1006/jfls.2002.0451