ANZIAM J. 47(EMAC2005) pp.C462--C474, 2006.

A dynamical systems model for fireline growth with suppression

R. O. Weber

H. S. Sidhu

(received 26 October 2005; revised 8 August 2006)

Abstract

An elementary dynamical systems model for fireline growth is presented. It includes the effect of suppression applied from a set time after the start of the fire. Criteria for the likely success of the containment activities are derived from the model.

Download to your computer

Authors

R. O. Weber
School of Physical, Environmental and Mathematical Sciences, UNSW at ADFA, Canberra 2600, Australia. mailto:rodney.weber@unsw.adfa.edu.au Bushfire CRC, Level 5, 340 Albert St. East Melbourne, Victoria 3002, Australia.
H. S. Sidhu
School of Physical, Environmental and Mathematical Sciences, UNSW at ADFA, Canberra 2600, Australia.

Published December 15, 2006. ISSN 1446-8735

References

  1. Anderson, D. H. (1989) A mathematical model for fire containment, Can. J. For. Res. 19, 997--1003.
  2. Anderson, D. H., Catchpole, E. A., de Mestre, N. J. and Parkes, T. (1982) Modelling the spread of grass fires, J. Aust. Math. Soc. Ser. B 23, 451--466.
  3. Assensio, M. I. and Ferragut, L. (2002) On a wildland fire model with radiation, Int. J. Numer. Meth. Engng. 54, 137--157.
  4. Pastor, E., Zarate, L., Planas, E. and Arnaldos, J. (2003) Mathematical models and calculation systems for the study of wildland fire behaviour, Prog. Energy Combust. Sci. 29, 139--153.
  5. Pelce, P. (1988) Dynamics of curved fronts Academic Press, Boston.