ANZIAM J. 47(EMAC2005) pp.C101--C115, 2006.
A Gauss--Lobatto quadrature method for solving optimal control problems
P. Williams |
Abstract
This paper proposes a direct approach for solving optimal control problems. The time domain is divided into multiple subdomains, and a Lagrange interpolating polynomial using the Legendre--Gauss--Lobatto points is used to approximate the states and controls. The state equations are enforced at the Legendre--Gauss--Lobatto nodes in a nonlinear programming implementation by partial Gauss--Lobatto quadrature in each subdomain. The final state in each subdomain is enforced by a full Gauss--Lobatto quadrature. The Bolza cost functional is naturally approximated using Gauss--Lobatto quadrature across all subdomains.
Download to your computer
- Click here for the PDF article (255 kbytes) We suggest printing 2up to save paper; that is, print two e-pages per sheet of paper.
- Click here for its BiBTeX record
Authors
- P. Williams
- School of Aerospace, Mechanical, and Manufacturing Engineering, RMIT University, Bundoora, Australia. mailto:paul.williams@rmit.edu.au
Published July 24, 2006. ISSN 1446-8735
References
- Betts, J. T., Survey of numerical methods for trajectory optimization, Journal of Guidance, Control, and Dynamics, 21, 1998, 193--207. http://pdf.aiaa.org/jaPreview/JGCD/1998/PVJAIMP4231.pdf
- Hargraves, C. R., and Paris, S. W., Direct trajectory optimization using nonlinear programming and collocation, Journal of Guidance, Dynamics, and Control, 10, 1987, 338--342. http://pdf.aiaa.org/jaPreview/JGCD/1987/PVJAPRE20223.pdf
- Enright, P. J., and Conway, B. A., Discrete approximations to optimal trajectories using direct transcription and nonlinear programming, Journal of Guidance, Control, and Dynamics, 15, 1992, 994--1002. http://pdf.aiaa.org/jaPreview/JGCD/1992/PVJAPRE20934.pdf
- Hager, W. W., Runge--Kutta method in optimal control and the transformed adjoint system, Numerische Mathematik, 87, 2000, 247--282. http://dx.doi.org/10.1007/s002110000178
- Herman, A. L., and Conway, B. A., Direct optimization using collocation based on high-order' Gauss--Lobatto quadrature rules, Journal of Guidance, Control, and Dynamics, 19, 1996, 592--599. http://pdf.aiaa.org/jaPreview/JGCD/1996/PVJAPRE21662.pdf
- Elnagar, G., Kazemi, M. A., and Razzaghi, M., The pseudospectral legendre method for discretizing optimal control problems, IEEE Transactions on Automatic Control, 40, 1995, 1793--1796. http://dx.doi.org/10.1109/9.467672
- Ross, I. M., and Fahroo, F., Legendre pseudospectral approximations of optimal control problems, Lecture Notes in Control and Information Sciences, 295, Springer-Verlag, Berlin, 2003. http://dx.doi.org/10.1007/b80168
- Fornberg, B., and Sloan, D. M., A review of pseudospectral methods for solving partial differential equations, Acta Numerica, 3, 1994, 203--267.
- Hildebrand, F. B., Introduction to Numerical Analysis, Second Edition, McGraw-Hill, New York, 1974.
- Gautschi, W., High-order Gauss--Lobatto formulae, Numerical Algorithms, 25, 2000, 213--222. http://dx.doi.org/10.1023/A:1016689830453