ANZIAM J. 47(EMAC2005) pp.C168--C184, 2006.

A computationally effective predictor-corrector method for simulating fractional order dynamical control system

C. Yang

F. Liu

(Received 14 October 2005; revised 24 July 2006)

Abstract

Multi-order fractional differential equations are applied to fractional order dynamical controlled systems. The multi-order fractional differential equation is transferred into a system of fractional order differential equations. A new computationally effective fractional predictor-corrector method is proposed for simulating the fractional order systems and controllers. A detailed error analysis is derived. Finally, we give some numerical examples.

Download to your computer

Authors

C. Yang
School of Mathematical Sciences, Xiamen University, Xiamen 361005, China. mailto:morningsail@163.com
F. Liu
School of Mathematical Sciences, Queensland University of Technology, Queensland 4001, Australia. mailto:f.liu@qut.edu.au.

Published August 1, 2006. ISSN 1446-8735

References

  1. Podlubny, I., Fractional differential equations. New York: Academic Press, 1999. http://www.tuke.sk/podlubny/fde.html
  2. Petras, I. and Dorcak, L., Fractional-order control systems: modeling and simulation, fractional calculus and applied analysis, 6, 2003, 205--232. http://www.diogenes.bg/fcaa/volume6/fcaa62/apetrased.pdf
  3. Hu Y. and Liu F., Numerical methods for a fractional-order control system, Journal of Xiamen University (NATURAL Science), 44, 2005, 313--317. URL
  4. Shen S., Liu F., A computational effective method for fractional order Bagley--Torvik equation, Journal of Xiamen University (NATURAL Science), 45, 2004, 306--311. URL
  5. Diethelm K., Ford N. J., and Freed Alen D., Detailed error analysis for a fractional adams method[M], Numerical Algorithms, Kluwer Academic Publishers, 2004, 31--52.
  6. Lin R., Liu F., Analysis of fractional-order numerical method for the fractional relaxation equation, Computational Mechanics, Tsinghua University and Springer-Verlag, 2004, R-362. http://dx.doi.org/10.1016/j.na.2005.12.027
  7. Liu F., Anh V., Turner I., Numerical solution of the space fractional Fokker--Planck equation, J. Comp. and Appl. Math., 166, 2004, 209--219. http://dx.doi.org/10.1016/j.cam.2003.09.028
  8. Miler K. S., Ross B., An introduction to the fractional calculus and fractional differential equations, 209--217, John Wiley, 1993.
  9. Diethelm K., Ford N. J., Numerical solution of the Bagley--Torvik equation, BIT 42, 2002, 490--507.
  10. Hairer E., Wanner G. Solving ordinary differential equations II: stiff and differential-algebraic problems. Springer, Berlin. 1991. URL
  11. Yang C., Liu F., A fractional predictor-corrector method of the fractional relaxation-oscillation equation, Journal of Xiamen University, 44, 2005, 761--765. URL
  12. Wang Z., Cao G., Two system modeling methods using fractional calculus, J. System Simulation, 16, 2004, 810--812. URL