Visualisation and statistical modelling techniques for the management of inventory stock levels


  • Winston LeMay Sweatman Massey University
  • James McGree Queensland University of Technology
  • Corrie Jacobien Carstens RMIT University
  • Kylie J. Foster University of South Australia
  • Shen Liu Queensland University of Technology
  • Nicholas Tierney Queensland University of Technology
  • Eloise Tredenick Queensland University of Technology
  • Ayham Zaitouny University of Western Australia



mathematics-in-industry, networks, CARTS


This paper describes the investigations conducted in a Mathematics-in-Industry Study Group project from the Australian meeting at Queensland University of Technology in 2015. This concerned the management of stock levels of raw materials used to construct aortic stents. The approaches used included network visualisation, classification and regression trees, and time series modelling. This work will be of general interest to those who are managing stock levels in a highly volatile context. The methods applied show that there is potential value in taking a statistical approach to understand and make decisions within such volatility. The work provides a basis for developing more advanced statistical approaches for specific inventory problems. References
  • Breiman, L. (1996) Bagging Predictors. Machine Learning, 24, 2, 123–140. doi:10.1023/A:1018054314350
  • Breiman, L. (2001) Statistical Modeling: The Two Cultures Statistical Science, 16, 3, 199–231.
  • Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. (1984) Classification and Regression Trees Wadsworth, Belmont, Ca. ISBN-13: 978-0412048418 ISBN-10: 0412048418
  • Csardi, G., Nepusz, T. (2006) The igraph software package for complex network research. InterJournal: Complex Systems, 1695, 5, 1–9.
  • Fruchterman, T. M. J., Reingold, E. M. (1991) Graph drawing by force-directed placement. Software: Practice and Experience, 21, 11, 1129–1164. doi:10.1002/spe.4380211102
  • Hastie, T., Tibshirani, R., Friedman, J. H. (2009) The elements of statistical learning : Data mining, inference, and prediction, 2nd edition New York: Springer Verlag. ISBN 978-0-387-84858-7 (eBook), ISBN 978-0-387-84857-0 (Hardcover) doi:10.1007/978-0-387-84858-7
  • Kim, J. H., Wong, K., Athanasopoulos, G., Liu, S. (2011) Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals. International Journal of Forecasting, 27, 887–901. doi:10.1016/j.ijforecast.2010.02.014
  • Liu, S., Maharaj, E. A. (2013). A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples. Computational Statistics and Data Analysis, 60, 32–49. doi:10.1016/j.csda.2012.11.014
  • Liu, S., Maharaj, E. A., Inder, B. (2014) Polarization of forecast densities: A new approach to time series classification. Computational Statistics and Data Analysis, 70, 345–361. doi:10.1016/j.csda.2013.10.008
  • Liu, S., McGree, J., Ge, Z., Xie, Y. (2015) Computational and Statistical Methods for Analysing Big Data with Applications. Elsevier, London. ISBN: 978-0-12-803732-4
  • Reingold, E. M., Tilford, J. S. (1981) Tidier drawings of trees. IEEE Transactions on Software Engineering, 7, 2, 223–228. doi:10.1109/TSE.1981.234519

Author Biography

Winston LeMay Sweatman, Massey University

Associate Professor , Institute of Natural and Mathematical Sciences, Massey University





Proceedings of the Mathematics in Industry Study Group