Predicting blood pressure in aortas treated for coarctation
DOI:
https://doi.org/10.21914/anziamj.v57i0.10388Abstract
Coarctation of the aorta is a narrowing of the aorta that is present at birth. Treatments for coarctation of the aorta affect the aorta wall stiffness. This study uses a 1D model to predict the effects of altered wall stiffness. Stent treatments increase both blood pressure and the radial change of the aorta wall over a heartbeat cycle, compared to both healthy aortas and the resection and end-to-end anastomosis treatment. References- A. M. Rudolph, M. A. Heymann, and U. Spitznas. Hemodynamic considerations in the development of narrowing of the aorta. Am. J. Cardiol. 30(5):514–525, 1972. doi:10.1016/0002-9149(72)90042-2
- N. S. Talner and M. A. Berman. Postnatal development of obstruction in coarctation of the aorta: role of the ductus arteriosus. Pediatrics, 56(4):562–569, 1975. http://pediatrics.aappublications.org/content/56/4/562
- P. S. Rao. Coarctation of the aorta. Curr. Cardiol. Rep., 7(6):425–434, 2005. doi:10.1007/s11886-005-0060-0
- Z. Keshavarz-Motamed, E. R. Edelman, P. K. Motamed, J. Garcia, N. Dahdah, and L. Kadem. The role of aortic compliance in determination of coarctation severity: Lumped parameter modeling, in vitro study and clinical evaluation. J. Biomech. 48(16):4229–4237, 2015. doi:10.1016/j.jbiomech.2015.10.017
- M. Campbell. Natural history of coarctation of the aorta. Br. Heart J. 32(5):633–640, 1970. doi:10.1136/hrt.32.5.633
- L. M. S. Padua, L. C. Garcia, C. J. Rubira, and P. E. de Oliveira Carvalho. Stent placement versus surgery for coarctation of the thoracic aorta. Cochrane Db. Syst. Rev. 5:CD008204, 2012. doi:10.1002/14651858.CD008204.pub2
- R. Jurcut, A. M. Daraban, A. Lorber, D. Deleanu, M. S. Amzulescu, C. Zara, B. A. Popescu, and C. Ginghina. Coarctation of the aorta in adults: what is the best treatment? Case report and literature review. J. Med. Life, 4(2):189–195, 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124275/
- J. Alastruey, T. Passerini, L. Formaggia, and J. Peiro. Physical determining factors of the arterial pulse waveform: theoretical analysis and calculation using the 1-D formulation. J. Eng. Math. 77(1):19–37, 2012. doi:10.1007/s10665-012-9555-z
- J. Alastruey, M. Willemet, K. Lau, S. Epstein, and S. Vennin. Nektar1D, Haemodynamic Modelling Research Group, Kings College London, 2016. http://haemod.uk/nektar
- J. Alastruey, K. H. Parker, and S. J. Sherwin. Arterial pulse wave haemodynamics. 11th International Conference on Pressure Surges, pg. 401–442, 2012. http://wwwf.imperial.ac.uk/ssherw/spectralhp/papers/PulseSurges_2012.pdf
- N. P. Smith, A. J. Pullan, and P. J. Hunter. An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62(3):990–1018, 2002. doi:10.1137/S0036139999355199
- N. Westerhof, F. Bosman, C. J. De Vries, and A. Noordergraaf. Analog studies of the human systemic arterial tree. J. Biomech. 2(2):121–134, 1969. doi:10.1016/0021-9290(69)90024-4
- N. Xiao, J. Alastruey, and C. A. Figueroa. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int. J. Numer. Meth. Biomed. Eng. 30(2):204–231, 2014. doi:10.1002/cnm.2598
- C. A. Figueroa, I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Meth. Appl. Mech. Eng. 195(41\T1\textendash 43):5685–5706, 2006. doi:10.1016/j.cma.2005.11.011
- E. Boileau, P. Nithiarasu, P. J. Blanco, L. O. Muller, F. E. Fossan, L. R. Hellevik, W. P. Donders, W. Huberts, M. Willemet, and J. Alastruey. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int. J. Numer. Meth. Biomed. Eng. 31(10):e02732, 2015. doi:10.1002/cnm.2732
Published
2016-06-07
Issue
Section
Proceedings Engineering Mathematics and Applications Conference