Deriving permeability distributions from fractal Gaussian tracer returns


  • Graham Weir Institute of Fundamental Sciences Massey University



Tracer returns in geothermal fields yield information about the connectivity between injection and production wells. We derive the equivalence between tracer returns described by a fractal Gaussian distribution, where diffusivity is scaled linearly with time, and tracer returns implied by one-sided Gaussian distributions of permeability. In this case, asymptotic tracer returns decay as the inverse square of time, and tracer returns are higher than predicted by methods assuming that asymptotic tracer returns decay exponentially with time. References
  • J. Bear Dynamics of Fluids in Porous Media. American Elsevier, New York, 1972.
  • M. W. Becker, A. M. Shapiro Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing. Water Resour Res, 36(7), 1677-1686, 2000. doi:10.1029/2000WR900080.
  • M. A. Grant, I. G. Donaldson, P. F Bixley Geothermal reservoir engineering. Academic Press, New York (1982)
  • B. R. Kristjansson, G. Gudni Axelsson, G. Gunnarsson, I. Gunnarsson, F. Finnbogi Oskarsson, Comprehensive Tracer Testing in PROCEEDINGS, 41st Workshop on Geothermal Reservoir Engineering Stanford
  • R. Haggerty, S. A. McKenna, L. C. Meigs, On the late-time behavior of tracer test breakthrough curves. Water Resour Res 36(12), 3467-3479, 2000. doi:10.1029/2000WR900214
  • A. Hunt, R. Ewing, B. Ghanbarian, Fractal Models of Porous Media. In: Percolation Theory for Flow in Porous Media. Lecture Notes in Physics, vol 880. Springer, 2014.
  • I. Kocabas, R. N. Horne, Analysis of Injection-Backflow Tracer Tests in Fractured Geothermal Reservoirs. Proc. 12th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, SGP-Tr-109, Jan 20-22, 1987.
  • P. Rose, K. Leecaster, S. Clausen, R. Sanjuan,M. Ames, P. Reimus, M. Williams, V. Vermeul, D. Benoit, A tracer test at Proc. 37th Workshop on Geothermal Reservoir Engineering, Stanford University, Jan. 30 - Feb. 1, 2012.
  • D. A. Nield, A. Bejin, Convection in Porous Media. 2nd edn. Springer, New York (1999)
  • A. E. Scheidegger, Horton's laws of stream lengths and drainage areas. Water Resources Res, 4(5), 1015-1021, 1968. doi:10.1029/WR004i005p01015.
  • R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer Fractal mobile/immobile solute transport. Water Resources Res, 39(10), 1296, 2003. doi:10.1029/2003WR002141
  • G. Weir, J. Burnell, Analysing tracer returns from geothermal reservoirs. In: Proceedings of 30th NZ Geothermal Workshop, Auckland, New Zealand, pp. 24 - 26, 2014.

Author Biography

Graham Weir, Institute of Fundamental Sciences Massey University

Adjunct Professor





Proceedings Engineering Mathematics and Applications Conference