The effects of model climate bias on ENSO variability and ensemble prediction
DOI:
https://doi.org/10.21914/anziamj.v60i0.14092Keywords:
hydrodynamic instability, computational methods, numerical algorithmsAbstract
New methods are presented for determining the role of coupled ocean-atmosphere model climate bias on the strength and variability of the El Nino-Southern Oscillation (ENSO) and on the seasonal ensemble prediction of El Nino and La Nina events. An intermediate complexity model with a global atmosphere coupled to a Pacific basin ocean is executed with parallelised algorithms to produce computationally efficient year-long forecasts of large ensembles of coupled flow fields, beginning every month between 1980 and 1999. Firstly, the model is provided with forcing functions that reproduce the average annual cycle of climatology of the atmosphere and ocean based on reanalysed observations. We also configure the model to generate realistic ENSO fluctuations. Next, an ensemble prediction scheme is employed which produces perturbations that amplify rapidly over a month. These perturbations are added to the analyses and give the initial conditions for the ensemble forecasts. The skill of the forecasts is presented and the dependency on the annual and ENSO cycles determined. Secondly, we replace the forcing functions in our model with functions that reproduce the averaged annual cycles of climatology of two state of the art, comprehensive Coupled General Circulation Models. The changes in skill of subsequent ensemble forecasts elucidate the roles of model bias in error growth and potential predictability. References- C. S. Frederiksen, J. S. Frederiksen, and R. C. Balgovind. ENSO variability and prediction in a coupled ocean-atmosphere model. Aust. Met. Ocean. J., 59:35–52, 2010a. URL http://www.bom.gov.au/jshess/papers.php?year=2010.
- C. S. Frederiksen, J. S. Frederiksen, and R. C. Balgovind. Dynamic variability and seasonal predictability in an intermediate complexity coupled ocean-atmosphere model. In Proceedings of the 16th Biennial Computational Techniques and Applications Conference, CTAC-2012, volume 54 of ANZIAM J., pages C34–C55, 2013a. doi:10.21914/anziamj.v54i0.6296.
- C. S. Frederiksen, J. S. Frederiksen, J. M. Sisson, and S. L. Osbrough. Trends and projections of Southern Hemisphere baroclinicity: the role of external forcing and impact on Australian rainfall. Clim. Dyn., 48:3261–3282, 2017. doi:10.1007/s00382-016-3263-8.
- J. S. Frederiksen, C. S. Frederiksen, and S. L. Osbrough. Seasonal ensemble prediction with a coupled ocean-atmosphere model. Aust. Met. Ocean. J., 59:53–66, 2010b. URL http://www.bom.gov.au/jshess/papers.php?year=2010.
- J. S. Frederiksen, C. S. Frederiksen, and S. L. Osbrough. Methods of ensemble prediction for seasonal forecasts with a coupled ocean-atmosphere model. In Proceedings of the 16th Biennial Computational Techniques and Applications Conference, CTAC-2012, volume 54 of ANZIAM J., pages C361–C376, 2013b. doi:10.21914/anziamj.v54i0.6509.
- P. R. Gent, G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke, S. R. Jayne, D. M. Lawrence, R. B. Neale, P. J. Rasch, M. Vertenstein, P. H. Worley, Z.-L. Yang, and M. Zhang. The community Climate System Model version 4. J. Clim., 24:4973–4991, 2011. doi:10.1175/2011JCLI4083.1.
- S. Grainger, C. S. Frederiksen, and X. Zheng. Assessment of modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP5 models. J. Clim., 27:8107–8125, 2014. doi:10.1175/JCLI-D-14-00251.1.
- E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph. The NCEP/NCAR 40-year reanalysis project. B. Am. Meteorol. Soc., 77:437–472, 1996. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
- H. A. Rashid, A. Sullivan, A. C. Hirst, D. Bi, X. Zhou, and S. J. Marsland. Evaluation of El Nino-Southern Oscillation in the ACCESS coupled model simulations for CMIP5. Aust. Met. Ocean. J., 63:161–180, 2013. doi:10.22499/2.6301.010.
- K. E. Taylor, R. J. Stouffer, and G. A. Meehl. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc., 93:485–498, 2012. doi:10.1175/BAMS-D-11-00094.1.
Published
2019-10-18
Issue
Section
Proceedings Computational Techniques and Applications Conference