Stochastic galerkin and collocation methods for quantifying uncertainty in differential equations: a review

John Davis Jakeman, Stephen Gwyn Roberts

Abstract


The article reviews the mathematical theory of stochastic Galerkin and stochastic collocation methods, focusing on their strengths and limitations. The aim is to construct a first stop, widely accessible document that directs a reader to more detailed descriptions of stochastic Galerkin and stochastic collocation methods that are suitable for their application of interest. References point to rigorous convergence proofs and accuracy estimates, computational considerations and numerical examples. A supplementary document gives a quick look-up guide to the strengths and weaknesses of stochastic Galerkin and collocation methods.

References
  • M. K. Deb, I. M. Babuska, and J. T Oden. Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Engrg., 190:6359--6372, 2001. doi:10.1016/S0045-7825(01)00237-7
  • B. J. Debusschere, H. N. Najm, P. P. Pebay, O. M. Knio, R. G. Ghanem, and O. P. Le Maitre. Numerical challenges in the use of Polynomial Chaos representations for stochastic processes. SIAM J. Sci. Comput., 26(2):698--719, 2005. doi:10.1137/S1064827503427741
  • Y. Ding, T. Li, D. Zhang, and P. Zhang. Adaptive Stroud stochastic Collocation method for flow in random porous media via Karhunen--Loeve expansion. Communications in Comp. Phys., 4(1):102--123, 2008.
  • J. Foo, X. Wan, and G. E Karniadakis. The multi-element probabilisitc collocation method (ME-PCM): Error analysis and applications. J. Comp. Phys., 227(22), 2008.
  • B. Ganapathysubramanian and N. Zabaras. Sparse grid collocation schemes for stochastic natural convection problems. J. Comput. Phys., 225(1):652--685, 2007. doi:10.1016/j.jcp.2006.12.014
  • T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numer. Alg., 18(3-4):209--232, 1998.
  • R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer--Verlag New York, Inc., New York, NY, USA, 1991.
  • S. P. Huang, S. T. Quek, and K. K. Phoon. Convergence study of the truncated karhunen--loeve expansion for simulation of stochastic processes. International Journal for Numerical Methods in Engineering, 52(9):1029--1043, 2001. doi:10.1002/nme.255
  • O. M. Knio and O. P. Le Maitre. Uncertainty propagation in CFD using Polynomial Chaos decomposition. Fluid Dyn. Res., 38(9):616--640, 2006. doi:10.1016/j.fluiddyn.2005.12.003
  • S. N. Lane, K. S. Richards, and J. H. Chandler. Application of distributed sensitivity analysis to a model of turbulent open channel flow in a natural river channel. Proceedings: Mathematical and Physical Sciences, 447(1929):49--63, 1994.
  • I. M. Babuska, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal., 45(3):1005--1034, 2007. doi:10.1137/050645142
  • O. P. Le Maitre, O. M. Knio, H. N. Najm, and R. G. Ghanem. Uncertainty propagation using Wiener--Haar expansions. J. Comput. Phys., 197(1):28--57, 2004. doi:10.1016/j.jcp.2003.11.033
  • R. Li and R. G. Ghanem. Adaptive Polynomial Chaos expansions applied to statistics of extremes in nonlinear random vibration. Prob. Engrg. Mech., 13(2):125--136, 1998.
  • M. Loeve. Probability Theory. Springer-Verlag, 4th edition, 1977.
  • D. Lucor, C.-H. Su, and G. E. Karniadakis. Generalized Polynomial Chaos and random oscillators. Int. J. Numer. Methods Eng., 60(3):571--596, 2004. doi:10.1002/nme.976
  • D. Lucor, D. Xiu, and G. E. Karniadakis. Spectral representations of uncertainty in simulations: Algorithms and applications. In C.-W Shu, editor, International Conference On Spectral and High Order Methods, Uppsala Sweden, 2001.
  • L. Mathelin, M. Hussaini, and T. Zang. Stochastic approaches to uncertainty quantification in CFD simulations. Num. Alg., 38(1-3):209--236, 2005.
  • I. P. Mysovskikh. Proof of the minimailty of the number of nodes in the cubature formula for a hypersphere. USSR Comput Math. Math. Phys., pages 15--27, 1966.
  • F. Nobile, R. Tempone, and C. G. Webster. An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal., 46(5):2411--2442, 2008. http://link.aip.org/link/?SNA/46/2411/1
  • F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal., 46(5):2309--2345, 2008. http://link.aip.org/link/?SNA/46/2309/1
  • M. M. Rao. Measure Theory and Integration. Marcel Dekker, Inc., New York U.S.A, 2nd edition, 2004.
  • I. M. Babuska, R. Tempone, and G. E. Zouraris. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal., 42(2):800--825, 2004. http://link.aip.org/link/?SNA/42/800/1
  • C. Schwab and R. A. Todor. Karhunen--loeve approximation of random fields by generalized fast multipole methods. J. Comp. Phys., 217(1):100--122, 2006. doi:10.1016/j.jcp.2006.01.048
  • M. Tatang, W. Pan, R. Prinn, and G. McRae. An efficient method for parametric uncertainty analysis of numerical geophysical model. J. Geophys. Res., 102(D18):21925--21932, 1997.
  • R. A. Todor and C. Schwab. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. of Numer. Anal., 27(2):232--261, Apr 2007. doi:10.1093/imanum/drl025
  • X. Wan and G. E. Karniadakis. An adaptive multi-element generalized Polynomial Chaos method for stochastic differential equations. J. Comput. Phys., 209(2):617--642, 2005. doi:10.1016/j.jcp.2005.03.023
  • N. Wiener. The homogeneous chaos. Amer. J. Math., 60(4):897--936, 1938.
  • D. Xiu. Efficient collocation approach for parametric uncertainty. Communications in Comput. Phys., 2(2):293--309, Apr 2007.
  • D. Xiu. Fast numerical methods for stochastic computations: a review. Comm. Comput. Phys., 5:242--272, 2009.
  • D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput., 27(3):1118--1139, 2005.
  • D. Xiu and G. E. Karniadakis. The Wiener--Askey Polynomial Chaos for stochastic differential equations. SIAM J. Sci. Comput., 24(2):619--644, 2002. doi:10.1137/S1064827501387826
  • D. Xiu and G. E. Karniadakis. Modeling uncertainty in flow simulations via generalized Polynomial Chaos. J. Comput. Phys., 187(1):137--167, 2003. doi:10.1016/S0021-9991(03)00092-5
  • V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math., 12:273--288, 2000.
  • R. Cameron and W. Martin. The orthogonal development of nonlinear functionals in series of Fourier--Hermite functionals. Ann. Math., 48(2):385--392, 1947.

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v50i0.1410



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.