Axisymmetric Hopf bifurcation in a free-surface rotating cylinder flow

Authors

  • Stuart James Cogan
  • Gregory J Sheard
  • Kris Ryan

DOI:

https://doi.org/10.21914/anziamj.v50i0.1432

Abstract

Using highly resolved simulations of the axisymmetric Navier--Stokes equations and a truncated Landau model we investigate the behavior of the flow in the vicinity of the axisymmetric Hopf-type transition in an open cylinder of height-to-radius aspect ratio of~$3/2$. Rotating flows in open cylinders have many practical applications for which the knowledge of the different flow states encountered is of value. We report on the location and non-linear evolution characteristics of the bifurcation and present, for the first time, evidence that confirms that transition occurs via a non hysteretic supercritical Hopf bifurcation, and visualisations of the mode to fully define the transition. References
  • Blackburn, H. M. and Lopez, J. M., Symmetry breaking of the flow in a cylinder driven by a rotating end wall, Phys. Fluids, 12, 2000, 2698--2701. doi:10.1063/1.1313550
  • Brons, M., Voigt, L. K. and Sorensen, J. N., Topology of vortex breakdown bubbles in a cylinder with a rotating bottom and a free surface, J. Fluid Mech., 28, 2001, 133--148. http://journals.cambridge.org/action/displayAbstract?aid=65067
  • Gelfgat, A. Y., Bar-Yoseph, P. Z. and Solan, A., Three-dimensional instability of axisymmetric flow in a rotating lid-cylinder enclosure, J. Fluid Mech., 438, 2001, 363--377. doi:10.1017/S0022112001004566
  • Hirsa, A. H., Lopez, J. M. and Miraghaie, R., Symmetry breaking to a rotating wave in a lid-driven cylinder with a free surface: Experimental observation, Phys. Fluids, 14, 2002, L29--L32. doi:10.1063/1.1471912
  • Karniadakis, G. E., Israeli, M. and Orszag, S. A., High-order splitting methods for the incompressible Navier-Stokes equations, J. Comp. Phys., 97, 1991, 414--443. doi:10.1016/0021-9991(91)90007-8
  • Lopez, J. M., Unsteady swirling flow in an enclosed cylinder with reflectional symmetry, Phys. Fluid, 7, 1995, 2700--2714. doi:10.1063/1.868717
  • Lopez, J. M., Cui, Y. D. and Lim, T. T., Experimental and numerical investigation of the competition between axizymmetric time-periodic modes in an enclosed swirling flow, Phys. Fluids, 18, 2006, 104106. doi:10.1063/1.2362782
  • Lopez, J. M., Marques, F., Hirsa, A. H. and Miraghaie, R., Symmetry breaking in free-surface cylinder flows, J. Fluid Mech., 502, 2004, 99--126. doi:10.1017/S0022112003007481
  • Marques, F. and Lopez, J. M., Precessing vortex breakdown mode in an enclosed cylinder flow, Phys. Fluids, 13, 2001, 1679--1682. doi:10.1063/1.1368849
  • Provansal, M., Mathis, C. and Boyer, L., Benard-von Karman instability: transient and forced regimes, J. Fluid Mech., 182, 1987, 1--22. doi:10.1017/S0022112087002222
  • Sheard, G. J., Leweke, T., Thompson, M. C. and Hourigan, K., Flow around an impulsively arrested circular cylinder, Phys. Fluids, 19, 2007, 083601. doi:10.1063/1.2754346
  • Sheard, G. J. and Ryan, K., Pressure-driven flow past spheres moving in a circular tube, J. Fluid Mech, 592, 2007, 233-262. doi:10.1017/S0022112007008543
  • Sheard, G. J., Thompson, M. C. and Hourigan, K., From spheres to circular cylinders: non-axisymmetric transitions in the flow fast rings, J. Fluid Mech., 506, 2004, 45--78. doi:10.1017/S0022112003006438

Published

2008-11-07

Issue

Section

Proceedings Computational Techniques and Applications Conference