Quasi-Monte Carlo for finance applications

Mike Giles, Frances Y Kuo, Ian H Sloan, Benjamin J Waterhouse

Abstract


Monte Carlo methods are used extensively in computational finance to estimate the price of financial derivative options. We review the use of quasi-Monte Carlo methods to obtain the same accuracy at a much lower computational cost, and focus on three key ingredients: the generation of Sobol' and lattice points, reduction of effective dimension using the principal component analysis approach at full potential, and randomization by shifting or digital shifting to give an unbiased estimator with a confidence interval. Our aim is to provide a starting point for finance practitioners new to quasi-Monte Carlo methods.

References
  • P. Acworth, M. Broadie, and P. Glasserman, A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing, in: Monte Carlo and quasi-Monte Carlo methods 1996 (P. Hellekalek, G. Larcher, H. Niederreiter, and P. Zinterhof, eds.), Springer Verlag, Berlin, 1--18 (1998).
  • J. Baldeaux, qmc for finance beyond Black-Scholes, submitted to ANZIAM J. Proc. CTAC 2008.
  • R. E. Caflisch, W. Morokoff, and A. B. Owen, Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension, J. Comp. Finance 1, 27--46 (1997). http://www.thejournalofcomputationalfinance.com/public/showPage.html?page=919
  • R. Cools, F. Y. Kuo, and D. Nuyens, Constructing embedded lattice rules for multivariate integration, SIAM J. Sci. Comput. 28, 2162--2188 (2006). doi:10.1137/06065074X
  • J. Dick, F. Pillichshammer, and B. J. Waterhouse, The construction of good extensible rank-$1$ lattices, Math. Comp. 77, 2345--2373 (2008). doi:10.1090/S0025-5718-08-02009-7
  • P. L'Ecuyer, Quasi-Monte Carlo methods in finance, in: Proceedings of the 2004 Winter Simulation Conference (R. G. Ingalls, M.D. Rossetti, J. S. Smith,and B. A. Peters, eds.), IEEE Computer Society Press, Los Alamitos, 1645--1655 (2004). doi:10.1109/WSC.2004.1371512
  • M. B. Giles and B. J. Waterhouse, Multilevel quasi-Monte Carlo path simulation, in preparation.
  • P. Glasserman, Monte Carlo methods in financial engineering, Springer--Verlag, New York, 2004.
  • S. Joe and F. Y. Kuo, Constructing Sobol' sequences with better two-dimensional projections, SIAM J. Sci. Comput. 30, 2635--2654 (2008). doi:10.1137/070709359
  • J. Keiner and B. J. Waterhouse, Fast implementation of the pca method for finance problems with unequal time steps, in preparation.
  • F. Y. Kuo and I. H. Sloan, Lifting the curse of dimensionality, Notices Amer. Math. Soc. 52, 1320--1329 (2005). http://www.ams.org/notices/200511/index.html
  • H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM, Philadelphia, 1992.
  • D. Nuyens and B. J. Waterhouse, Adaptive quasi-Monte Carlo in finance, in preparation.
  • K. Scheicher, Complexity and effective dimension of discrete Levy areas, J. Complexity 23, 152--168 (2007). doi:10.1016/j.jco.2006.12.006
  • I. H. Sloan, X. Wang, and H. Wozniakowski, Finite-order weights imply tractability of multivariate integration, J. Complexity 20, 46--74 (2004). doi:10.1016/j.jco.2003.11.003
  • X. Wang and I. H. Sloan, Quasi-Monte Carlo methods in financial enginnering: an equivalence principle and dimension reduction, in preparation.

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v50i0.1440



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.