A note regarding extensions of fixed point theorems involving two metrics via an analysis of iterated functions





fixed point theorem, iterations, applied analysis, two metrics


The purpose of this work is to advance the current state of mathematical knowledge regarding fixed point theorems of functions. Such ideas have historically enjoyed many applications, for example, to the qualitative and quantitative understanding of differential, difference and integral equations. Herein, we extend an established result due to Rus [Studia Univ. Babes-Bolyai Math., 22, 1977, 40–42] that involves two metrics to ensure wider classes of functions admit a unique fixed point. In contrast to the literature, a key strategy herein involves placing assumptions on the iterations of the function under consideration, rather than on the function itself. In taking this approach we form new advances in fixed point theory under two metrics and establish interesting connections between previously distinct theorems, including those of Rus [Studia Univ. Babes-Bolyai Math., 22, 1977, 40–42], Caccioppoli [Rend. Acad. Naz. Linzei. 11, 1930, 31–49] and Bryant [Am. Math. Month. 75, 1968, 399–400]. Our results make progress towards a fuller theory of fixed points of functions under two metrics. Our work lays the foundations for others to potentially explore applications of our new results to form existence and uniqueness of solutions to boundary value problems, integral equations and initial value problems.


  • Almuthaybiri, S. S. and C. C. Tisdell. ``Global existence theory for fractional differential equations: New advances via continuation methods for contractive maps''. Analysis, 39(4):117–128, 2019. doi:10.1515/anly-2019-0027
  • Almuthaybiri, S. S. and C. C. Tisdell. ``Sharper existence and uniqueness results for solutions to third-order boundary value problems, mathematical modelling and analysis''. Math. Model. Anal. 25(3):409–420, 2020. doi:10.3846/mma.2020.11043
  • Banach, S. ``Sur les operations dans les ensembles abstraits et leur application aux equations integrales''. Fund. Math., 3:133–181 1922. doi:10.4064/fm-3-1-133-181
  • Brouwer, L. E. J. ``Ueber Abbildungen von Mannigfaltigkeiten''. Math. Ann. 71:598, 1912. doi:10.1007/BF01456812
  • Bryant, V. W. ``A remark on a fixed point theorem for iterated mappings'' Am. Math. Month. 75: 399–400, 1968. doi:10.2307/2313440
  • Caccioppoli, R. ``Un teorema generale sullesistenza de elemente uniti in una transformazione funzionale''. Rend. Acad. Naz. Linzei. 11:31–49, 1930.
  • Goebel, K., and W. A. Kirk. Topics in metric fixed point theory. Cambridge University Press, 1990, doi:10.1017/CBO9780511526152
  • Leray, J., and J. Schauder. ``Topologie et equations fonctionnelles''. Ann. Sci. Ecole Norm. Sup. 51:45–78, 1934. doi:10.24033/asens.836
  • O'Regan, D. and R. Precup. Theorems of Leray–Schauder type and applications, Series in Mathematical Analysis and Applications, Vol. 3. CRC Press, London, 2002. doi:10.1201/9781420022209
  • Rus, I. A. ``On a fixed point theorem of Maia''. Studia Univ. Babes-Bolyai Math. 22:40–42, 1977.
  • Schaefer, H. H. ``Ueber die Methode der a priori-Schranken''. Math. Ann. 129:415–416, 1955. doi:10.1007/bf01362380
  • Tisdell, C. C. ``When do fractional differential equations have solutions that are bounded by the Mittag-Leffler function?'' Fract. Calc. Appl. Anal. 18(3):642–650, 2015. doi:10.1515/fca-2015-0039
  • Tisdell, C. C. ``A note on improved contraction methods for discrete boundary value problems.'' J. Diff. Eq. Appl. 18(10):1773–1777, 2012. doi:10.1080/10236198.2012.681781
  • Tisdell, C. C. ``On the application of sequential and fixed-point methods to fractional differential equations of arbitrary order.'' J. Int. Eq. Appl. 24(2):283–319, 2012. doi:10.1216/JIE-2012-24-2-283
  • Ehrnstrom, M., Tisdell, C. C. and E. Wahlen. ``Asymptotic integration of second-order nonlinear difference equations.'' Glasg. Math. J. 53(2):223–243, 2011. doi:10.1017/S0017089510000650
  • Erbe, L., A. Peterson and C. C. Tisdell. ``Basic existence, uniqueness and approximation results for positive solutions to nonlinear dynamic equations on time scales.'' Nonlin. Anal. 69(7):2303–2317, 2008. doi:10.1016/j.na.2007.08.010
  • Tisdell, C. C. and A. Zaidi. ``Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling.'' Nonlin. Anal. 68(11):3504–3524, 2008. doi:10.1016/j.na.2007.03.043
  • Tisdell, C. C. ``Improved pedagogy for linear differential equations by reconsidering how we measure the size of solutions.'' Int.. J. Math. Ed. Sci. Tech. 48(7):1087–1095, 2017. doi:10.1080/0020739X.2017.1298856
  • Tisdell, C. C. ``On Picard's iteration method to solve differential equations and a pedagogical space for otherness.'' Int. J. Math. Ed. Sci. Tech. 50(5):788–799, 2019. doi:10.1080/0020739X.2018.1507051
  • Zeidler, E. Nonlinear functional analysis and its applications. Springer-Verlag, New York, 1986. doi:10.1007/978-1-4612-4838-5

Author Biographies

Charles P Stinson, The University of New South Wales

Graduate student

Saleh S Almuthaybiri, The University of New South Wales Qassim University

Graduate Student

Christopher C Tisdell, The University of New South Wales

Full professor





Proceedings Engineering Mathematics and Applications Conference