An analytical option pricing formula for mean-reverting asset with time-dependent parameter
DOI:
https://doi.org/10.21914/anziamj.v63.15172Keywords:
option pricing, mean-reverting process, Feynman-Kac formulaAbstract
We present an analytical option pricing formula for the European options, in which the price dynamics of a risky asset follows a mean-reverting process with a time-dependent parameter. The process can be adapted to describe a seasonal variation in price such as in agricultural commodity markets. An analytical solution is derived based on the solution of a partial differential equation, which shows that a European option price can be decomposed into two terms: the payoff of the option at the initial time and the time-integral over the lifetime of the option driven by a time-dependent parameter. Finally, results obtained from the formula have been compared with Monte Carlo simulations and a Black–Scholes-type formula under various kinds of long-run mean functions, and some examples of option price behaviours have been provided.