Reconstruction of tubular structures from 2.5D point clouds: A mesophotic gorgonian coral case study

Authors

DOI:

https://doi.org/10.21914/anziamj.v63.17151

Keywords:

Gorgonian coral, Photogrammetry, 2.5D point cloud, 3D reconstruction, Skeleton-based tecniques

Abstract

A method for the surface reconstruction of 3D tubular branched structures characterized by low informative point clouds (i.e., 2.5D) is proposed. These specific clouds can arise when using photogrammetry techniques on complex subjects in challenging scanning environments (e.g., underwater gorgonian coral at mesophotic depths). The core idea behind the proposed Sphere Skeleton Approach (SSA) is to approximate the assumed tubular shapes via merged spheres having variable radii and centered in the points of the medial skeleton. To assess the generality and robustness of the proposed SSA, additional experiments have been conducted on 2.5D point clouds that were synthetically generated from 3D model benchmarks. Hausdorff distances between the target and the reconstructed 3D models are used to quantitatively compare the SSA performances to a classical meshing algorithm. Early results highlight the capability to outperform existing approaches in reconstructing objects from 2.5D clouds.

References

  • Agisoft. 2021. url: https://www.agisoft.com/
  • M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and C. T. Silva. A benchmark for surface reconstruction. ACM Trans. Graph. 32.2 (2013), pp. 1–17. doi: 10.1145/2451236.2451246
  • M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud, J. A. Levine, A. Sharf, and C. T. Silva. A survey of surface reconstruction from point clouds. Comput. Graph. Forum. Vol. 36. 1. 2017, pp. 301–329. doi: 10.1111/cgf.12802
  • F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Visual. Comput. Graph. 5.4 (1999), pp. 349–359. doi: 10.1109/2945.817351
  • J. F. Blinn. A generalization of algebraic surface drawing. ACM Trans. Graph. 1.3 (1982), pp. 235–256. doi: 10.1145/357306.357310
  • P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia. Meshlab: an open-source mesh processing tool. Eurographics Italian Chapter Conference. Ed. by V. Scarano,
  • R. De Chiara, and U. Erra. 2008, pp. 129–136. doi: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
  • H. Huang, S. Wu, D. Cohen-Or, M. Gong, H. Zhang, G. Li, and B. Chen. L1-medial skeleton of point cloud. ACM Trans. Graph. 32.4 (2013), pp. 1–8. doi: 10.1145/2461912.2461913
  • Y.-H. Jin and W.-H. Lee. Fast cylinder shape matching using random sample consensus in large scale point cloud. Appl. Sci. 9.5 (2019), p. 974. doi: 10.3390/app9050974
  • L. Liu, D. Ceylan, C. Lin, W. Wang, and N. J. Mitra. Image-based reconstruction of wire art. ACM Trans. Graph. 36.4 (2017), pp. 1–11. doi: 10.1145/3072959.3073682
  • B. B. Mandelbrot. The fractal geometry of nature. Vol. 1. W. H. Freeman New York, 1982. url: https://www.nhbs.com/the-fractal-geometry-of-nature-book
  • J. Mei, L. Zhang, S. Wu, Z. Wang, and L. Zhang. 3D tree modeling from incomplete point clouds via optimization and L1-MST. Int. J. Geo. Inf. Sci. 31.5 (2017), pp. 999–1021. doi: 10.1080/13658816.2016.1264075
  • S. J. Rowley, T. E. Roberts, R. R. Coleman, H. L. Spalding, E. Joseph, and M. K. L. Dorricott. Pohnpei, Federated States of Micronesia. Mesophotic Coral Ecosystems. Springer, 2019, pp. 301–320. doi: 10.1007/978-3-319-92735-0_17
  • K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix, and S. Dickinson. Retrieving articulated 3-D models using medial surfaces. Machine Vis. Appl. 19.4 (2008), pp. 261–275. doi: 10.1007/s00138-007-0097-8
  • Sketchfab. 2021. url: https://sketchfab.com/
  • L. Wasserman. Topological data analysis. Ann. Rev. Stat. Appl. 5 (2018), pp. 501–532. doi: 10.1146/annurev-statistics-031017-100045

Published

2022-06-06

Issue

Section

Proceedings Engineering Mathematics and Applications Conference