The primitive Orr–Sommerfeld equation and its solution by finite elements
DOI:
https://doi.org/10.21914/anziamj.v63.17159Keywords:
Orr-Sommerfeld, scikit-fem, Python, ARPACK, SciPy, Mini elementAbstract
The linear stability of parallel shear flows of incompressible viscous fluids is classically described by the Orr–Sommerfeld equation in the disturbance streamfunction. This fourth-order equation is obtained by eliminating the pressure from the linearized Navier–Stokes equation. Here we consider retaining the primitive velocity-pressure formulation, as is required for general multidimensional geometries for which the streamfunction is unavailable; this affords a uniform description of one-, two-, and three-dimensional flows and their perturbations. The Orr–Sommerfeld equation is here discretized using Python and scikit- fem, in classical and primitive forms with Hermite and Mini elements, respectively. The solutions for the standard test problem of plane Poiseuille flow show the primitive formulation to be simple, clear, very accurate, and better-conditioned than the classical.
References
- L. Allen and T. J. Bridges. Numerical exterior algebra and the compound matrix method. Numer. Math. 92 (2002), pp. 197–232. doi: 10.1007/s002110100365
- M. Azaïez, M. Deville, and E. H. Mund. Éléments finis pour les fluides incompressibles. Lausanne: EPFL Press, 2011. url: https://www.epflpress.org/produit/146/9782880748944/elements-finis-pour-les-fluides-incompressibles
- F. Charru. Instabilités hydrodynamiques. EDP Sciences, 2007. url: https://laboutique.edpsciences.fr/produit/97/9782759801107/instabilites-hydrodynamiques.
- W. O. Criminale, T. L. Jackson, and R. D. Joslin. Theory and Computation in Hydrodynamic Stability. Cambridge University Press, 2003. doi: 10.1017/CBO9780511550317
- A. Davey. A simple numerical method for solving Orr–Sommerfeld problems. Q. J. Mech. Appl. Math. 26 (1973), pp. 401–411. doi: 10.1093/qjmam/26.4.401
- J.-P. Dedieu. Condition operators, condition numbers, and condition number theorem for the generalized eigenvalue problem. Lin. Alg. Appl. 263 (1997), pp. 1–24. doi: 10.1016/S0024-3795(96)00366-7
- J. J. Dongarra, B. Straughan, and D. W. Walker. Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22 (1996), pp. 399–434. doi: 10.1016/S0168-9274(96)00049-9
- P. G. Drazin and W. H. Reid. Hydrodynamic Stability. Cambridge University Press, 2004. doi: 10.1017/CBO9780511616938
- A. Ern. Éléments finis. Paris: Dunod, 2005. url: https://www.dunod.com/sciences-techniques/aide-memoire-elements-finis
- T. Gustafsson and G. D. McBain. scikit-fem: A Python package for finite element assembly. J. Open Source Softw. 5, 2369 (2020). doi: 10.21105/joss.02369
- N. P. Kirchner. Computational aspects of the spectral Galerkin FEM for the Orr–Sommerfeld equation. Int. J. Numer. Meth. Fluids 32 (2000), pp. 105–121. doi: 10.1002/(SICI)1097-0363(20000115)32: 1<105::AID-FLD938>3.0.CO;2-X
- Y. S. Li and S. C. Kot. One-dimensional finite element method in hydrodynamic stability. Int. J. Numer. Meth. Eng. 17 (1981), pp. 853–870. doi: 10.1002/nme.1620170604
- M. Mamou and M. Khalid. Finite element solution of the Orr–Sommerfeld equation using high precision Hermite elements: plane Poiseuille flow. Int. J. Numer. Meth. Fluids 44 (2004), pp. 721–735. doi: 10.1002/fld.661
- M. L. Manning, B. Bamieh, and J. M. Carlson. Descriptor approach for eliminating spurious eigenvalues in hydrodynamic equations. Tech. rep. 2007. url: http://arxiv.org/abs/0705.1542
- G. D. McBain, T. H. Chubb, and S. W. Armfield. Numerical solution of the Orr–Sommerfeld equation using the viscous Green function and split-Gaussian quadrature. J. Comput. Appl. Math. 224 (2009), pp. 397–404. doi: 10.1016/j.cam.2008.05.040
- S. A. Orszag. Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50 (1971), pp. 689–703. doi: 10.1017/S0022112071002842
- P. Paredes, M. Hermanns, S. Le Clainche, and V. Theofilis. Order 104 speedup in global linear instability analysis using matrix formation. In: Comput. Methods Appl. Mech. Eng. 253 (2013), pp. 287–304. doi: 10.1016/j.cma.2012.09.014
- V. Theofilis. Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39 (2003), pp. 249–315. doi: 10.1016/S0376-0421(02)00030-1
- J. V. Valério, M. S. Carvalho, and C. Tomei. Filtering the eigenvalues at infinite from the linear stability analysis of incompressible flows. J. Comput. Phys. 227 (2007), pp. 229 –243. doi: 10.1016/j.jcp.2007.07.017
- D. Varieras, P. Brancher, and A. Giovannini. Self-sustained oscillations of a confined impinging jet. Flow Turbul. Combust. 78, 1 (2007). doi: 10.1007/s10494-006-9017-7
- P. Virtanen, R. Gommers, T. E. Oliphant, et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Meth. 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-2
- J. A. Weideman and S. C. Reddy. A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26 (2000), pp. 465–519. doi: 10.1145/365723.365727
- S. Yiantsios and B. G. Higgins. Analysis of superposed fluids by the finite element method: Linear stability and flow development. Int. J. Numer. Meth. Fluids 7 (1987), pp. 247–261. doi: 10.1002/fld.1650070305