# A mixed finite element method using a biorthogonal system for optimal control problems governed by a biharmonic equation

## DOI:

https://doi.org/10.21914/anziamj.v64.17961## Abstract

In this article, we consider an optimal control problem governed by a biharmonic equation with clamped boundary conditions. We use the Ciarlet--Raviart formulation combined with a biorthogonal system to obtain an efficient numerical scheme. We discuss the a priori error analysis and present results of the numerical experiments that validate the theoretical estimates.

**References**

- L. Boudjaj, A. Naji, and F. Ghafrani.
*Solving biharmonic equation as an optimal control problem using localized radial basis functions collocation method*. Eng. Anal. Bound. Elements 107 (2019), pp. 208–217. doi: 10.1016/j.enganabound.2019.07.007 - W. Cao and D. Yang.
*Ciarlet–Raviart mixed finite element approximation for an optimal control problem governed by the first biharmonic equation*. J. Comput. App. Math. 233.2 (2009), pp. 372–388. doi: 10.1016/j.cam.2009.07.039 - P. G. Ciarlet. The finite element method for elliptic problems. Vol. 40. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2002. doi: 10.1137/1.9780898719208.
- V. Girault and P.-A. Raviart. Finite element methods for Navier–Stokes equations. Vol. 5. Springer Series in Computational Mathematics. Springer-Verlag, 1986. doi: 10.1007/978-3-642-61623-5
- T. Gudi, N. Nataraj, and K. Porwal.
*An interior penalty method for distributed optimal control problems governed by the biharmonic operator*. Comput. Math. App. 68.12 (2014), pp. 2205–2221. doi: 10.1016/j.camwa.2014.08.012 - B. P. Lamichhane.
*A mixed finite element method for the biharmonic problem using biorthogonal or quasi-biorthogonal systems*. J. Sci. Comput. 46.3 (2011), pp. 379–396. doi: 10.1007/s10915-010-9409-7. - B. P. Lamichhane and E. Stephan.
*A symmetric mixed finite element method for nearly incompressible elasticity based on biorthogonal systems*. Numer. Meth. Part. Diff. Eq. 28 (2012), pp. 1336–1353. doi: 10.1002/num.20683 - J. L. Lions. Optimal control of systems governed by partial differential equations. Vol. 170. Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York-Berlin, 1971. url: https://link.springer.com/book/9783642650260
- F. Tröltzsch. Optimal control of partial differential equations: Theory, methods and applications. Vol. 112. Graduate Studies in Mathematics. American Mathematical Society, 2010. doi: 10.1090/gsm/112.
- G. N. Wells, E. Kuhl, and K. Garikipati.
*A discontinuous Galerkin method for the Cahn–Hilliard equation*. J. Comput. Phys. 218 (2006), pp. 860 –877. doi: 10.1016/j.jcp.2006.03.010

## Published

2023-11-01

## Issue

## Section

Proceedings Computational Techniques and Applications Conference