A mixed finite element method using a biorthogonal system for optimal control problems governed by a biharmonic equation
DOI:
https://doi.org/10.21914/anziamj.v64.17961Abstract
In this article, we consider an optimal control problem governed by a biharmonic equation with clamped boundary conditions. We use the Ciarlet--Raviart formulation combined with a biorthogonal system to obtain an efficient numerical scheme. We discuss the a priori error analysis and present results of the numerical experiments that validate the theoretical estimates.
References- L. Boudjaj, A. Naji, and F. Ghafrani. Solving biharmonic equation as an optimal control problem using localized radial basis functions collocation method. Eng. Anal. Bound. Elements 107 (2019), pp. 208–217. doi: 10.1016/j.enganabound.2019.07.007
- W. Cao and D. Yang. Ciarlet–Raviart mixed finite element approximation for an optimal control problem governed by the first biharmonic equation. J. Comput. App. Math. 233.2 (2009), pp. 372–388. doi: 10.1016/j.cam.2009.07.039
- P. G. Ciarlet. The finite element method for elliptic problems. Vol. 40. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2002. doi: 10.1137/1.9780898719208.
- V. Girault and P.-A. Raviart. Finite element methods for Navier–Stokes equations. Vol. 5. Springer Series in Computational Mathematics. Springer-Verlag, 1986. doi: 10.1007/978-3-642-61623-5
- T. Gudi, N. Nataraj, and K. Porwal. An interior penalty method for distributed optimal control problems governed by the biharmonic operator. Comput. Math. App. 68.12 (2014), pp. 2205–2221. doi: 10.1016/j.camwa.2014.08.012
- B. P. Lamichhane. A mixed finite element method for the biharmonic problem using biorthogonal or quasi-biorthogonal systems. J. Sci. Comput. 46.3 (2011), pp. 379–396. doi: 10.1007/s10915-010-9409-7.
- B. P. Lamichhane and E. Stephan. A symmetric mixed finite element method for nearly incompressible elasticity based on biorthogonal systems. Numer. Meth. Part. Diff. Eq. 28 (2012), pp. 1336–1353. doi: 10.1002/num.20683
- J. L. Lions. Optimal control of systems governed by partial differential equations. Vol. 170. Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York-Berlin, 1971. url: https://link.springer.com/book/9783642650260
- F. Tröltzsch. Optimal control of partial differential equations: Theory, methods and applications. Vol. 112. Graduate Studies in Mathematics. American Mathematical Society, 2010. doi: 10.1090/gsm/112.
- G. N. Wells, E. Kuhl, and K. Garikipati. A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218 (2006), pp. 860 –877. doi: 10.1016/j.jcp.2006.03.010
Published
2023-11-01
Issue
Section
Proceedings Computational Techniques and Applications Conference