Analysis of a finite element method for the Stokes–Poisson–Boltzmann equations
DOI:
https://doi.org/10.21914/anziamproc.v66.19580Keywords:
Stokes–Poisson–Boltzmann equations, Finite element discretisation, Fixed-point analysis, Error estimatesAbstract
We define a finite element method for the coupling of Stokes and nonlinear Poisson–Boltzmann equations. The novelty in the formula- tion is that the coupling from the electric potential to the drag in the momentum balance is rewritten as a weighted advection term. Using Banach’s contraction principle, the Babuška–Brezzi theory, and the Minty–Browder theorem, we show that the governing equations have a unique weak solution. We also show that the discrete problem is well-posed, establish Céa estimates, and derive convergence rates. We exemplify the properties of the proposed scheme via some numerical experiments showcasing convergence and applicability in the study of electro-osmotic flows in micro-channels.
References
- F. T. Akyildiz, A. F. A. AlSohaim, and N. Kaplan. Electro-osmotic and pressure-driven flow in an eccentric microannulus. Zeitschr. Nat. A 74.6 (2019), pp. 513–521. doi: 10.1515/zna-2018-0483
- M. Alvarez, G. N. Gatica, and R. Ruiz-Baier. A mixed-primal finite element method for the coupling of Brinkman–Darcy flow and nonlinear transport. IMA J. Numer. Anal. 41.1 (2021), pp. 381–411. doi: 10.1093/imanum/drz060
- S. Badia, A. F. Martín, and F. Verdugo. GridapDistributed: A massively parallel finite element toolbox in Julia. J. Open Source Softw. 7.74, 4157 (2022). doi: 10.21105/joss.04157
- D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods and Applications. Vol. 44. Berlin: Springer-Verlag, 2013. doi: 10.1007/978-3-642-36519-5
- Philippe G. C. Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics: SIAM, 2013. doi: 10.1137/1.9781611978247
- S. Caucao, R. Oyarzúa, and S. Villa-Fuentes. A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy. Calcolo 57.4, 36 (2020). doi: 10.1007/s10092-020-00385-3
- L. Chen, M. J. Holst, and J. Xu. The finite element approximation of the nonlinear Poisson–Boltzmann equation. SIAM J. Numer. Anal. 45.6 (2007), pp. 2298–2320. doi: 10.1137/060675514
- A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. New York: Applied Mathematical Sciences, 159. Springer-Verlag, 2004. doi: 10.1007/978-1-4757-4355-5
- M. Holst, J. A. McCammon, Z. Yu, Y. C. Zhou, and Y. Zhu. Adaptive finite element modeling techniques for the Poisson–Boltzmann equation. Comm. Comput. Phys. 11.1 (2012), 179–214. doi: 10.4208/cicp.081009.130611a
- J. A. Iglesias and S. Nakov. Weak formulations of the nonlinear Poisson-Boltzmann equation in biomolecular electrostatics. J. Math. Anal. Appl. 511.1 (2022), p. 126065. doi: 10.1016/j.jmaa.2022.126065
- J. Kraus, S. Nakov, and S. I. Repin. Reliable numerical solution of a class of nonlinear elliptic problems generated by the Poisson–Boltzmann equation. Comput. Methods Appl. Math. 20.2 (2020), pp. 293–319. doi: 10.1515/cmam-2018-0252
- Gregor Mitscha-Baude, Andreas Buttinger-Kreuzhuber, Gerhard Tulzer, and Clemens Heitzinger. Adaptive and iterative methods for simulations of nanopores with the PNP–Stokes equations. J. Comput. Phys. 338 (2017), pp. 452–476. doi: 10.1016/j.jcp.2017.02.072
- A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations. Vol. 23. Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1994, pp. xvi+543. doi: 10.1007/978-3-540-85268-1
Published
2025-12-08
Issue
Section
Proceedings Computational Techniques and Applications Conference