Robust virtual element methods for 3D stress-assisted diffusion problems

Authors

  • Andres Eduardo Rubiano Martinez Monash University

DOI:

https://doi.org/10.21914/anziamproc.v66.19587

Keywords:

virtual element methods, stress-assisted diffusion, diffusion-induced stress, perturbed saddle-point problems

Abstract

This article presents an initial exploration of stress-assisted diffusion problems in three dimensions within the framework of the Virtual Element Method. Hilbert spaces enriched with parameter-weighted norms, the extended Babuška–Brezzi–Braess theory for perturbed saddle-point problems, and Banach fixed-point theory play a crucial role in performing a robust analysis of the fully coupled non-linear system. The proposed virtual element formulations are provided with appropriate projection, interpolation, and stabilisation operators that ensures the well-posedness of the discrete problem. Numerical simulations are conducted to show the accuracy, performance, and applicability of the
method.

References

  • D. Braess. Stability of saddle point problems with penalty. ESIAM: Modél. Math. Anal. Numér. 30.6 (1996), pp. 731–742. url: https://www.numdam.org/item/?id=M2AN_1996__30_6_731_0
  • C. Cherubini, S. Filippi, A. Gizzi, and R. Ruiz-Baier. A note on stress-driven anisotropic diffusion and its role in active deformable media. J. Theor. Biol. 430 (2017), pp. 221–228. doi: 10.1016/j.jtbi.2017.07.013
  • F. Dassi, A. Fumagalli, A. Scotti, and G. Vacca. Bend 3d mixed virtual element method for Darcy problems. Comput. Math. Appl. 119 (2022), pp. 1–12. doi: 10.1016/j.camwa.2022.05.023
  • Franco Dassi. VEM++, a C++ library to handle and play with the virtual element method. Numer. Algor. (2025). doi: 10.1007/s11075-025-02059-z
  • P. Grigoreva, E. N. Vilchevskaya, and W. H. Müller. Stress and Diffusion Assisted Chemical Reaction Front Kinetics in Cylindrical Structures. Contributions to Advanced Dynamics and Continuum Mechanics. Springer International Publishing, 2019, pp. 53–72. doi: 10.1007/978-3-030-21251-3_4
  • R. Khot, A. E. Rubiano, and R. Ruiz-Baier. Robust virtual element methods for coupled stress-assisted diffusion problems. SIAM J. Sci. Comput. 47 (2025), A497–A526. doi: 10.1137/24M163640X
  • J. Meng, L. Beirão da Veiga, and L. Mascotto. Stability and interpolation properties for Stokes-like virtual element spaces. J. Sci. Comput. 94, 56 (2023). doi: 10.1007/s10915-023-02112-w
  • J. D. Murray. Mathematical Biology: II: Spatial Models and Biomedical Applications. 3rd ed. Springer, 2003. doi: 10.1007/b98869
  • M. Taralov. Simulation of Degradation Processes in Lithium-Ion Batteries. Ph.D. Thesis. Technische Universität Kaiserslautern, 2015. url: https://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-40855
  • L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. H(div) and H(curl)-conforming VEM. Numer. Math. 133 (2016), 303–332. doi: 10.1007/s00211-015-0746-1
  • L. Beirão da Veiga, F. Dassi, and G. Vacca. The Stokes complex for virtual elements in three dimensions. Math. Mod. Meth. Appl.Sci. 30 (2020), pp. 477–512. doi: 10.1142/S0218202520500128
  • L. Beirão da Veiga, D. Mora, and G. Vacca. The Stokes complex for virtual elements with application to Navier–Stokes flows. J. Sci. Comput. 81 (2019), 990–1018. doi: 10.1007/s10915-019-01049-3

Published

2025-12-08

Issue

Section

Proceedings Computational Techniques and Applications Conference