A fast algorithm for simulating finite scattering configurations featuring Rayleigh–Bloch waves
DOI:
https://doi.org/10.21914/anziamproc.v66.19615Keywords:
wave scattering, Rayleigh-Bloch, multiple scatteringAbstract
Rayleigh–Bloch (RB) waves are a class of guided waves that occur in periodic structures, specifically in one-dimensional (1D) arrays of scatterers, and decay exponentially away from the array. RB waves can
also be identified on large finite arrays, and contribute significantly to their response to incident wave forcing. Moreover, RB waves can be utilised to design arrays with specific characteristics, such as trapping, blocking, or amplifying waves. However, simulating wave interactions with these arrays poses challenges due to the large number of scatterers. Additionally, the existence of RB waves is linked to poor conditioning of the associated linear systems. We address these challenges by employing a recently developed fast matrix–vector product boundary integral equation algorithm for simulating wave interactions in large configurations. We combine state-of-the-art iterative solvers with effective preconditioners, for periodic structures containing hundreds of penetrable 2D scatterers.
- A. J. Archer, H. A. Wolgamot, J. Orszaghova, L. G. Bennetts, M. A. Peter, and R. V. Craster. Experimental realisation of broadband control of water wave energy amplification in chirped arrays. Phys. Rev. Fluids 5 (2020), 062801(R). L. G. Bennetts and M. A. Peter. Rayleigh–Bloch waves above the cutoff. J. Fluid Mech. 940 (2022), A35. doi: 10.1017/jfm.2022.247
- L. G. Bennetts, M. A. Peter, and R. V. Craster. Graded resonator arrays for spatial frequency separation and amplification of water waves. J. Fluid Mech. 854 (2018), R4. doi: 10.1017/jfm.2018.648
- G. J. Chaplain, S. C. Hawkins, M. A. Peter, L. G. Bennetts, and T. A. Starkey. Acoustic lattice resonances and generalised Rayleigh–Bloch waves. Nature Comm. Phys. 8, 37 (2025). doi: 10.1038/s42005-025-01950-4
- D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. 4th. Springer, 2019. doi: 10.1007/978-3-030-30351-8
- T. J. Dufva, J. Sarvas, and J. Sten. Unified derivation of the translation addition theorems for the spherical and vector wave functions. Prog. in Electromag. Res. B 4 (2008), pp. 79–99. D. V. Evans and R. Porter. Trapping and near-trapping by arrays of cylinders in waves. J. Eng. Math. 35 (1999), pp. 149–179. doi: 10.1023/A:1004358725444
- M. Ganesh and S. C. Hawkins. A fast algorithm for the two-dimensional Helmholtz transmission problem with large multiple scattering configurations. J. Acoust. Soc. Am. 156 (2024), pp. 752–762. doi: 10.1121/10.0028121 C3, C5, C6, C7, C12, C13).
- M. Ganesh and S. C. Hawkins. Algorithm 975: TMATROM—A T-matrix reduced order model software. ACM Trans. Math. Softw. 44 (2017), 9:1–9:18. doi: 10.1145/3054945
- S. C. Hawkins, L. G. Bennetts, M. A. Nethercote, M. A. Peter, Daniel Peterseim, H. J. Putley, and B. Verfürth. Metamaterial applications of TMATSOLVER, an easy-to-use software for simulating multiple wave scattering in two dimensions. Proc. Roy. Soc. A 480, 2292 (2024). doi: 10.1098/RSPA.2023.0934
- C. M. Linton and M. McIver. The existence of Rayleigh–Bloch surface waves. J. Fluid Mech. 470 (2002), pp. 85–90. doi: 10.1017/S0022112002002227
- H. D. Maniar and J. N. Newman. Wave diffraction by a long array of cylinders. J. Fluid Mech. 339 (1997), pp. 309–330. K. Matsushima, L. G. Bennetts, and M. A. Peter. Tracking Rayleigh–Bloch waves swapping between Riemann sheets. Proc. Roy. Soc. A 480, 2301 (2024). doi: 10.1098/rspa.2024.0211
- R. Porter and D. V. Evans. Rayleigh–Bloch surface waves along periodic gratings and their connection with trapped modes in waveguides. J. Fluid Mech. 386 (1999), pp. 233–258. doi: 10.1017/S0022112099004425
- V. Romero-Garcia, R Picó, A. Cebrecos, V. J. Sánchez-Morcillo, and K. Staliunas. Enhancement of sound in chirped sonic crystals. Appl. Phys. Lett. 102, 091906 (2013). doi: 10.1063/1.4793575
- Y. Saad. A Flexible Inner-Outer Preconditioned GMRES Algorithm. SIAM J. Sci. Comp. 14.2 (1993), pp. 461–469. doi: 10.1137/0914028
- Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7.3 (1986), pp. 856–869. doi: 10.1137/0907058
- I. Thompson and C. M. Linton. Guided surface waves on one- and two-dimensional arrays of spheres. SIAM J. Appl. Math. 70 (2010), pp. 2975–2995. doi: 10.1137/100787519
- I. Thompson, C. M. Linton, and R. Porter. A new approximation method for scattering by long finite arrays. Q. J. Mech. Appl. Math. 61 (2008), pp. 333–352. doi: 10.1093/qjmam/hbn006