Components and phases: modelling progressive hydrothermal eruptions

Robert McKibbin, Thomasin A Smith, Luke Fullard

Abstract


This is a review of progress made since [R. McKibbin, Proc. 11th New Zealand Geothermal Workshop 1989, 267–273] began development of a mathematical model for progressive hydrothermal eruptions (as distinct from “blasts”). Early work concentrated on modelling the underground process, while lately some attempts have been made to model the eruption jet and the flight and deposit of ejected material. Conceptually, the model is that of a boiling and expanding two-phase fluid rising through porous rock near the ground surface, with a vertical high-speed jet, dominated volumetrically by the gas phase, ejecting rock particles that are then deposited on the ground near the eruption site. Field observations of eruptions in progress and experimental results from a laboratory-sized model have confirmed the conceptual model. The quantitative models for all parts of the process are based on the fundamental conservation equations of motion and thermodynamics, using a continuum approximation for each of the components.

doi:10.1017/S144618110900011X

Keywords


hydrothermal eruptions, boiling in porous media, eruption column



DOI: http://dx.doi.org/10.21914/anziamj.v50i0.2322



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.