Symmetric solutions for two-body dynamics in a collision prevention model

David J. Gates

Abstract


This paper presents the first analytical solutions for the three-dimensional motion of two idealized mobiles controlled by a particular guidance law designed to avoid a collision with minimal path deviation. The mobiles can be regarded as particles, and guidance can be interpreted as complex forces of interaction between the particles. The motion is then a generalized form of two-body Newtonian dynamics. If the mobiles have equal speeds, the relative motion is determined through various transformations of the differential equations. Solvability relies on congruence and symmetries of the paths, which is exploited to reduce the original twelve first-order differential equations to three first- order equations for the relative motion. The resulting state space is partitioned into five invariant subsets, with various symmetries and stabilities. One of these sets describes planar motion, where simple explicit solutions are given. In nonplanar motion, the solution is formally reduced to quadrature. A numerical calculation gives the separation at the closest point of approach, which provides control over minimum separation. The results should be of interest because of their application, which includes, most importantly, the prevention of midair collisions between aircraft, but also potential application to land, water and space vehicles. The solutions should be of interest to mathematical specialists in dynamical systems, because of some novel constants of the motion, novel symmetries, and the associated reducibility of the equations.

doi:10.1017/S1446181111000691

Keywords


collision prevention; two-body problem; symmetric solutions



DOI: http://dx.doi.org/10.21914/anziamj.v52i0.2851



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.