Combined natural convection cooling of a drink can

Sujin Jiracheewanun, Steve Armfield, Masud Behnia

Abstract


We investigate natural convection cooling of the fluid in a drink can placed in a refrigerator by simulating the full combined boundary layer system on the can wall. The cylindrical can is filled with water at initial nondimensional temperature 0, and located within a larger cylindrical container filled with air at initial temperature −1. The outer container walls are maintained at constant temperature −1. Initially both fluids are at rest. Two configurations are examined: the first has the inner can placed vertically in the middle of the outer container with no contact with the outer container walls, and the second has the inner can placed vertically at the bottom of the outer container. The results are compared to those obtained by assuming that the inner can walls are maintained at a constant temperature, showing similar basic flow features and scaling relations, but with very different proportionality constants.

doi:10.1017/S1446181111000538

Keywords


natural convection cooling; conjugate boundary layer



DOI: http://dx.doi.org/10.21914/anziamj.v52i0.2890



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.