Computational study of a micro-turbine engine combustor using Large Eddy Simulation and Reynolds Averaged turbulence models

Carlos Andres Gonzalez Toro, KC Wong, Steve Armfield

Abstract


A computational study of the combustion process inside micro-turbine engines is presented. Different turbulence models are assessed and results are compared against experimental data. Results indicate that RANS models and LES with dynamic Smagorinsky sub-grid model fail to achieve convergence or accurate solutions at the meshes employed in this study. Less accurate results are obtained for the DES when compared with LES-WALE. In terms of the combustion, the outlet flow presents temperature gradients that are likely to affect the turbine performance.

References
  • M. D. Agrawal and S. Bharani. Performance Evaluation of a Reverse-flow Gas Turbine Combustor using Modified Hydraulic Analogy. The institute of Engineers India Journal MC, April 2004:34--44, 2004. http://www.ieindia.org/publish/mc/0404/apr04mc7.pdf
  • HeonSeok Lee and JeongJung Yoon. The Study on Development of Low NOx Combustor with Lean Burn Characteristics for 20kW class Microturbine. Proceedings of ASME Turbo Expo, 14--17 June, Viena, Austria, 2004.
  • R. Tuccillo and M. C. Cameretti. Comparing different solutions for the micro-gas turbine combustor. Proceedings of ASME Turbo Expo. 14--17 June, Viena, Austria, 2004.
  • T. Kamps. Model Jet Engines. Traplet Publications Ltd. 3rd Edition. 2005.
  • S. Adachia, A. Iwamotoa, S. Hayashib, H. Yamadab and S. Kaneko Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine combustor. Proceedings of the Combustion Institute. Volume 31, Number 2, pages 3131--3138, 2007. doi:10.1016/j.proci.2006.07.239
  • C. Syred, W. Fick, A. J. Griffiths and N. Syred. Cyclone gasifier and cyclone combustor for the use of biomass derived gas in the operation of a small gas turbine in cogeneration plants. Fuel. Volume 83, Issues 17--18, pages 2381--2392, 2004. doi:10.1016/j.fuel.2004.01.013
  • I. Gurrappa and A. S. Rao. Thermal barrier coatings for enhanced efficiency of gas turbine engines. Surface and Coatings Technology. Volume 201, Number 6, pages 3016--3029, 2006. doi:10.1016/j.surfcoat.2006.06.026
  • A. Portinhaa, V. Teixeiraa, J. Carneiroa, J. Martinsb, M. F. Costac, R. Vassend and D. Stoeverd. Characterization of thermal barrier coatings with a gradient in porosity. Surface and Coatings Technology, Volume 195, Issues 2--3, pages 245--251, 2005. doi:10.1016/j.surfcoat.2004.07.094
  • G. Boudier, L. Y. M. Gicquel, T. Poinsot, D. Bissieres and C. Berat Comparison of {les}, {rans} and experiments in an aeronautical gas turbine combustion chamber. Proceedings of the Combustion Institute. Volume 31, Number 2, pages 3075--3082, 2007. http://www.cerfacs.fr/ cfdbib/repository/TR_CFD_06_25.pdf
  • K.-U. Schildmacher, A. Hoffmann A, L. Selle, R. Koch, C. Schulz, H.-H. Bauer, T. Poinsot, W. Krebs and B. Prade. Unsteady flame and flow field interaction of a premixed model gas turbine burner. Proceedings of the Combustion Institute, Volume 31, Number 2, pages 3197--3205, 2007. doi:10.1016/j.proci.2006.07.081
  • F. Ham, S. Apte, G. Iaccarino, X. Wu, M. Herrmann, G. Constantinescuy, K. Maheshz and P. Moin. Unstructured {les} of reacting Multiphase flows in realistic gas turbine combustors. In Center for Turbulence Research. Annual Research Briefs 2003. http://ctr.stanford.edu/ResBriefs03/asci_combustor_group.pdf
  • A. Datta and S. K. Som. Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl conditions. Applied Thermal Engineering. Volume 19, Number 9, pages 949--967. 1999. doi:10.1016/S1359-4311(98)00102-1
  • S. James, J. Zhu and M. S. Anand. Large-Eddy Simulations as a Design Tool for Gas Turbine Combustion Systems. AIAA JOURNAL. Volume 44, Number 4, April 2006.
  • J. Artes and K. Schreckling. Building instructions and plans for the KJ-66 turbojet engine. Available at http://www.artesjet.com/.
  • J. H. Ferziger and M. Peric. Computational methods for fluid dynamics. Springer. 3d edition, 2002.
  • FLUENT user manuals. Fluent Inc. v. 6.3.23. USA.
  • Q. Zhou and M. A. Leschziner. A time-correlated stochastic model for particle dispersion in anisotropic turbulence. Proceedings of the 8th Turbulent Shear Flows Symposium. Munich, 1991.
  • A. B. Liu, D. Mather and R. D. Reitz. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays. SAE Technical Paper. 930072, SAE, 1993.
  • R. D. Reitz. Modeling atomization processes in high-pressure vaporizing sprays. Atomization and Spray Technology. 3:309--337, 1987.
  • G. X. Yang and J. S.Chin. Experimental study on atomization of plain jet injector under high pressure co-axial air flow. ASME, 32nd International Gas Turbine Conference and Exhibition. Anaheim, CA, May 31-June 4, 1987.
  • J. S. Chin. Atomization study in Jet Propulsion Lab. BIAA---A survey report. International Journal of Turbo and Jet-Engines. Volume 6, Number 3--4, pages 205--219, 1989.
  • A. H. Lefevbre. Airblast atomization. Progress in Energy Combustion Science. Volume 6, pages 233--261. 1980.
  • K. N. Bray and N. Peters. Laminar Flamelets in Turbulent Flames. In P. A. Libby and F. A. Williams, editors. Turbulent Reacting Flows. pages 63--114. Academic Press, 1994
  • N. Peters. Laminar Diffusion Flamelet Models in Non Premixed Combustion. Prog. Energy Combust. Sci.. 10:319--339, 1984.
  • L. Elliott, D. B. Ingham, A. G. Kyne, N. S. Mera, M. Pourkashanian, and C. W. Wilson. A novel reduced reaction mechanism for kerosene combustion generated using genetic algorithms. Proceedings of ASME Turbo Expo 2004: Land, sea and air. Vienna, Austria, GT-2004-53053, 2004.

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v49i0.338



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.