Inverse Sturm-Liouville problems: some recent developments
DOI:
https://doi.org/10.21914/anziamj.v52i0.3888Keywords:
inverse Sturm-Liouville problems, asymptotic correction, eigenvaluesAbstract
We consider numerical methods for obtaining, from spectral data, information on the potentials of Sturm--Liouville operators. In particular, we describe some recent work on methods using an asymptotic correction technique of Paine, de Hoog and Anderssen. Topics covered include a discussion of difficulties arising from the scarcity of accurate data in physical applications, a preview of some work in progress on the Hochstadt--Lieberman problem, and suggestions for future work. References- A. L. Andrew. Asymptotic correction of more Sturm--Liouville eigenvalue estimates. BIT, 43:485--503, 2003. MR 2004m:65104 http://www.ams.org/mathscinet-getitem?mr=2004m:65104. doi:10.1023/B:BITN.0000007052.66222.6d
- A. L. Andrew. Numerov's method for inverse Sturm--Liouville problems. Inverse Problems, 21:223--238, 2005. MR 2006d:65076 http://www.ams.org/mathscinet-getitem?mr=2006d:65076. doi:10.1088/0266-5611/21/1/014
- A. L. Andrew. Asymptotic correction and inverse eigenvalue problems: an overview. ANZIAM J., 46(E):C1--C14, 2005. Zbl 1078.65558. http://anziamj.austms.org.au/V46/CTAC2004/Andr
- A. L. Andrew. Computing Sturm--Liouville eigenvalues from two spectra. Inverse Problems 22:2069--2081, 2006. MR 2007i:34013 http://www.ams.org/mathscinet-getitem?mr=2007i:34013. doi:10.1088/0266-5611/22/6/010
- A. L. Andrew. Finite difference methods for half inverse Sturm--Liouville problems. Appl. Math. Comp., (to appear). doi:10.1016/j.amc.2011.05.085
- A. L. Andrew and J. W. Paine. Correction of Numerov's eigenvalue estimates. Numer. Math., 47:289--300, 1985. MR 86j:65101 http://www.ams.org/mathscinet-getitem?mr=86j:65101. doi:10.1007/BF01389712
- C. Bockmann and A. Kammanee. Broyden method for inverse non-symmetric Sturm--Liouville problems. BIT, to appear. doi:10.1007/s10543-011-0317-5
- A. Boumenir and V. K. Tuan. An inverse problem for the heat equation. Proc. Amer. Math. Soc. 138:3911--3921, 2010. Zbl 1202.35344. doi:10.1090/S0002-9939-2010-10297-6
- K. Chadan, D. Colton, L. Paivarinta and W. Rundell. An introduction to inverse scattering and inverse spectral problems. SIAM, 1993.
- M. T. Chu. Inverse eigenvalue problems. SIAM Rev., 40:1--39, 1998. http://www.siam.org/journals/sirev/40-1/30398.html
- C. R. Dun and R. S. Anderssen. Algebraic correction methods for inverse Sturm--Liouville problems. In D. Stewart, H. Gardner and D. Singleton, editors, Computational Techniques and Applications: CTAC93, pages 202--210. World Scientific, 1994.
- R. H. Fabiano, R. Knobel and B. D. Lowe. A finite difference algorithm for an inverse Sturm--Liouville problem. IMA J. Numer. Anal. 15:75--88, 1995. doi:10.1093/imanum/15.1.75
- F. Gesztesy and B. Simon. Inverse spectral analysis with partial information on the potential II The case of discrete spectrum. Trans. Amer. Math. Soc. 352:2765--2787, 2000. MR 2000j:34019 http://www.ams.org/mathscinet-getitem?mr=2000j:34019. doi:10.1090/S0002-9947-99-02544-1
- P. Ghelardoni and C. Magherini. BVMs for computing Sturm--Liouville symmetric potentials. Appl. Math. Comp. 217:3032--3045, 2010. doi:10.1016/j.amc.2010.08.036
- G. M. L. Gladwell 2004 Inverse Problems in Vibration 2nd edn. Dordrecht: Kluwer Academic Publishers, 2004. MR 2005g:74059 http://www.ams.org/mathscinet-getitem?mr=2005g:74059.
- O. H. Hald and J. R. McLaughlin. Solutions of inverse nodal problems. Inverse Problems 5:307--347, 1989. MR 90c:34015 http://www.ams.org/mathscinet-getitem?mr=90c:34015. doi:10.1088/0266-5611/5/3/008
- H. Hochstadt and B. Lieberman. An inverse Sturm--Liouville problem with mixed given data. SIAM J. Appl. Math. 34:676--680, 1978. MR 57\#10077 http://www.ams.org/mathscinet-getitem?mr=57\#10077. doi:10.1137/0134054
- M. Ignatiev and V. Yurko. Numerical methods for solving inverse Sturm--Liouville problems. Result. Math. 52:63--74, 2008. MR 2009c:65160 http://www.ams.org/mathscinet-getitem?mr=2009c:65160. doi:10.1007/s00025-007-0276-y
- A. Kammanee and C. Bockmann. Determination of partially known Sturm--Liouville potentials. Appl. Math. Comp. 204:928--937, 2008. doi:10.1016/j.amc.2008.08.001
- A. Kammanee and C. Bockmann. Boundary value method for inverse Sturm--Liouville problems. Appl. Math. Comp. 214:342--352, 2009. MR 2010g:65090 http://www.ams.org/mathscinet-getitem?mr=2010g:65090. doi:10.1016/j.amc.2009.04.002
- B. D. Lowe, M. Pilant and W. Rundell. The recovery of potentials from finite spectral data. SIAM J. Math. Anal. 23:482--504, 1992. MR 93f:34024 http://www.ams.org/mathscinet-getitem?mr=93f:34024.
- J. T. Marti. Small potential corrections for the discrete eigenvalues of the Sturm--Liouville problem. Numer. Math. 57:51--62, 1990. doi:10.1007/BF01386396
- M. Neher. Enclosing solutions of an inverse Sturm--Liouville problem with finite data. Computing 53:379--395, 1994. MR 95i:65111 http://www.ams.org/mathscinet-getitem?mr=95i:65111. doi:10.1007/BF02307388
- J. Paine. A numerical method for the inverse Sturm--Liouville problem. SIAM J. Sci. Stat. Comput. 5:149--156, 1984. MR 85c:65097 http://www.ams.org/mathscinet-getitem?mr=85c:65097. doi:10.1137/0905011
- J. Paine. Regularization applied to the recovery of piecewise constant Sturm--Liouville potentials Proc. CMA, Austral. Nat. Univ. 17:106--116, 1988. MR 90d:65152 http://www.ams.org/mathscinet-getitem?mr=90d:65152.
- J. W. Paine, F. R. de Hoog and R. S. Anderssen. On the correction of finite difference eigenvalue approximations. Computing 26:123--139, 1981. doi:10.1007/BF02241779
- J. Poschel and E. Trubowitz. Inverse spectral theory. Academic Press, 1987. MR 89b:34061 http://www.ams.org/mathscinet-getitem?mr=89b:34061.
- J. D. Pryce. Numerical solution of Sturm--Liouville problems. Oxford University Press, 1993. MR 95h:65056 http://www.ams.org/mathscinet-getitem?mr=95h:65056.
- M. Rafler and C. Bockmann. Reconstructive method for inverse Sturm--Liouville problems with discontinuous potentials. Inverse Problems 23:933--946, 2007. doi:10.1088/0266-5611/23/3/006
- N. Rohrl. A least-squares functional for solving inverse Sturm--Liouville problems Inverse Problems 21: 2009--2017, 2005. MR 2006h:34024 http://www.ams.org/mathscinet-getitem?mr=2006h:34024. doi:10.1088/0266-5611/21/6/013
- W. Rundell and P. E. Sacks. Reconstruction techniques for classical Sturm--Liouville problems. Math. Comp. 58:161--183, 1992. doi:10.1090/S0025-5718-1992-1106979-0
- V. V. Ternovskii and M. M. Khapaev. Reconstruction of potentials in the Sturm--Liouville inverse problem by the variational method. Dokl. Math. 73:107--111, 2006. doi:10.1134/S1064562406010297
Published
2011-07-01
Issue
Section
Proceedings Computational Techniques and Applications Conference