Comparison of approximate inverse preconditioners for the fractional step Navier--Stokes equations

Vivien S. Djanali, Steven W. Armfield, Michael P. Kirkpatrick

Abstract


Sparse approximate inverses are applied as preconditioners for the fractional step solution of the Navier--Stokes equations. An advantage of this method is that its implementation requires only matrix-vector products and hence is relatively easy to parallelise. Since the coefficients for the pressure Poisson equation are constant, sparse approximate inverses need to be constructed only once, and are recalled in the subsequent iterations. Using the three dimensional turbulent channel flow as a test case, this study shows that the sparse approximate inverse preconditioners have comparable sequential performance to the Incomplete Lower-Upper preconditioner with same amount of fill to the original coefficient matrix.

References
  • S. Armfield and R. Street. An analysis and comparison of the time accuracy of fractional-step methods for the Navier--Stokes equations on staggered grid. Int. J. Numer. Methods Fluids, 38:255--282, 2002. doi:10.1002/fld.217
  • S. W. Armfield, N. Williamson, M. P. Kirkpatrick, and R. Street. A divergence free fractional-step method for the Navier--Stokes equations on non-staggered grids. ANZIAM J., 51:C654--C667, 2010. http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2627
  • M. Benzi and M. Tuma. A comparative study of sparse approximate inverse preconditioners. Appl. Numer. Math, 30:305--340, 1998. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.1340
  • M. Benzi and M. Tuma. Numerical experiments with two approximate inverse preconditioners. BIT, 38:234--241, 1998. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.9389
  • M. Benzi and M. Tuma. A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput., 19(3):968--994, 1998. doi:10.1137/S1064827595294691
  • R. Bru, J. Cerdan, J. Marin, and J. Mas. Preconditioning sparse nonsymmetric linear systems with the Sherman--Morrison formula. SIAM J. Sci. Comput., 25(2):701--715, 2003. doi:10.1137/S1064827502407524
  • E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse iterations. SIAM J. Sci. Comput., 19(3):995--1023, 1998. doi:10.1137/S1064827594270415
  • M. J. Grote and T. Huckle. Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput., 18(3):838--853, May 1997. doi:10.1137/S1064827594276552
  • L. Y. Kolotilina and A. Y. Yeremin. Factorized sparse approximate inverse preconditionings I. Theory. SIAM J. Matrix Anal. Appl., 14(1):45--58, 1993. doi:10.1137/0614004
  • R. D. Moser, J. Kim, and N. N. Mansour. {Direct numerical simulation of turbulent channel flow up to Re$_\tau $ = 590}. Phys. Fluids, 11(4):943--945, 1999. doi:10.1063/1.869966
  • Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, USA, 2nd edition, 2003.

Keywords


preconditioning methods; turbulent incompressible flow; fractional-step methods

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v52i0.3890



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.