A radial basis Galerkin method for spherical surface Stokes equations
DOI:
https://doi.org/10.21914/anziamj.v52i0.3921Keywords:
Stokes equations, radial basis function, Galerkin methodAbstract
Many global climate models require efficient algorithms for solving the Stokes and Navier--Stokes equations with a divergence-free constraint on a spherical surface. Compactly supported radial basis functions (with centres at well distributed mesh points on a spherical surface) are more efficient than mesh based methods for computing divergence-free numerical solutions for partial differential equations on smooth surfaces. As a stepping stone towards developing an efficient radial basis algorithm for the full Navier--Stokes equations, we propose, analyse, and implement a surface divergence-free spherical radial basis Galerkin method for the Stokes equations on the unit sphere. References- E. Fuselier, F. Narcowich, J. D. Ward, and G. Wright. Error and stability estimates for surface-divergence free RBF interpolants on the sphere. Math. Comp., 78:2157--2186, 2009. doi:10.1090/S0025-5718-09-02214-5
- M. Ganesh, Q. T. Le Gia, and I. H. Sloan. A pseudospectral quadrature method for Navier--Stokes equations on rotating spheres. Math. Comp., 80:1397--1430, 2011. doi:doi:10.1090/S0025-5718-2010-02440-8
- A. A. Il'in. The Navier--Stokes and Euler equations on two dimensional manifolds. Math. USSR. Sbornik, 69:559--579, 1991. doi:10.1070/SM1991v069n02ABEH002116
- F. J. Narcowich and J. D. Ward. Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal., 33:1393--1410, 2002. doi:10.1137/S0036141001395054
- F. J. Narcowich, J. D. Ward, and G. B. Wright. Divergence-free RBFs on surfaces. J. Fourier Anal. Appl., 13:643--663, 2007. doi:10.1007/s00041-006-6903-2
- E. B. Saff and A. B. J. Kuijlaars. Distributing many points on a sphere. Math. Intelligencer, 19:5--11, 1997. doi:10.1007/BF03024331
- H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Comp. Math., 4:389--396, 1995. doi:10.1007/BF02123482
- D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber. A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102:211--224, 1992. doi:10.1016/0021-9991(92)90060-C
Published
2011-05-03
Issue
Section
Proceedings Computational Techniques and Applications Conference