A parametric investigation of natural ventilation flow with a line heat source

Authors

  • Tae Hattori
  • Steven Armfield
  • Michael Kirkpatrick

DOI:

https://doi.org/10.21914/anziamj.v52i0.3925

Abstract

The effects of Reynolds number ($\Reyn$) and Prandtl number ($\Pr$) on fully-developed, transitional natural ventilation flow with a line heat source are investigated using two dimensional direct numerical simulations. The flow is simulated in the range, $5.0\times10^5\leq \Reyn\leq 1.58\times10^6$ and $0.7\leq \Pr\leq 70$. The initial development of the flow is also investigated and scaling relationships are obtained for initial peak velocity, time taken to reach the initial peak and time taken for the onset of instability. Spectral amplitudes are shown to reduce with increasing~$\Pr$. In lower~$\Pr$ flows, large amplitude motions occur at higher frequencies than for higher~$\Pr$. The interface height is found to vary with the parameter values, and the upper layer temperature distribution is found to be more uniform at lower~$\Pr$. References
  • I. E. Abdalla, M. J. Cook, S. J. Rees, and Z. Yang. Large--eddy simulation of buoyancy-driven natural ventilation in an enclosure with a point heat source. Int. J. Comput. Fluid Dyn., 21(5--6):231--45, 2007. doi:10.1080/10618560701599710
  • S. W. Armfield. Ellipticity, accuracy, and convergence of the discrete Navier--Stokes equations. J. Comput. Phys., 114(2):176--84, 1994. doi:10.1006/jcph.1994.1158
  • S. W. Armfield and R. Street. An analysis and comparison of the time accuracy of fractional--step methods for the Navier--Stokes equations on staggered grids. Int. J. Numer. Methods Fluids, 38(3):255--82, January 2002. doi:10.1002/fld.217
  • R. J. M. Bastiaans, C. C. M. Rindt, F. T. M. Nieuwstadt, and A. A. van Steenhoven. Direct and large-eddy simulation of the transition of two- and three-dimensional plane plumes in a confined enclosure. Int. J. Heat Mass Transfer, 43(13):2375--93, 2000. doi:10.1016/S0017-9310(99)00302-6
  • G. K. Batchelor. Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. general discussion and the case of small conductivity. J.Fluid Mech., 5(01):113--33, 1959. doi:10.1017/S002211205900009X
  • Y. A. Gostintsev, L. A. Sukhanov, and A. F. Solodovnik. Steady self-similar turbulent plume above a point source of heat and matter. Fluid Dynamics, 18:273--8, 1983. doi:10.1007/BF01091118
  • N. B. Kaye, Y. Ji, and M. J. Cook. Numerical simulation of transient flow development in a naturally ventilated room. Building and Environment, 44(5):889--897, May 2009. doi:10.1016/j.buildenv.2008.06.016
  • R. H. Kraichnan. Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10(7):1417--23, 1967. doi:10.1063/1.1762301
  • R. H. Kraichnan and D. Montgomery. Two-dimensional turbulence. Rep. Prog. Phys., 43(5):547--619, 1980. doi:10.1088/0034-4885/43/5/001
  • B. P. Leonard and S. Mokhtari. Beyond first-order upwinding: The ultra-sharp alternative for non-oscillatory steady-state simulation of convection. Int. J. Numer. Methods Eng., 30(4):729--66, 1990. doi:10.1002/nme.1620300412
  • P. F. Linden, G. F. Laneserff, and D. A. Smeed. Emptying filling boxes---the fluid-mechanics of natural ventilation. J. Fluid Mech., 212:309--35, 1990. doi:10.1017/S0022112090001987
  • Yuen D. Majumder, C. and A. Vincent. Four dynamical regimes for a starting plume model. Phys. Fluids, 16(5):1516--31, 2004. doi:10.1063/1.1683151
  • B. R. Morton, G. Taylor, and J. S. Turner. Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. London, Ser. A, 234(1196):1--23, 1956. doi:10.1098/rspa.1956.0011
  • P. Orlandi. Vortex dipole rebound from a wall. Physics of Fluids A: Fluid Dynamics, 2(8):1429--36, 1990. doi:10.1063/1.857591

Published

2012-01-05

Issue

Section

Proceedings Computational Techniques and Applications Conference