Numerical investigation of the ventilation performance of a solar chimney


  • Rakesh Khanal
  • Chengwang Lei



Solar Chimney, Natural Ventilation, Thermal Buoyancy


This article reports a two dimensional, steady state, numerical simulation of the air flow inside a solar chimney with a fixed absorber height but various air gap widths and inlet aperture heights. The ventilation performance of the solar chimney in terms of the mass flow rate is presented. The numerical results show that the mass flow rate is an increasing function of surface emissivity and input heat flux. It is also found that the mass flow rate is up to 59% higher with a surface emissivity of 0.9 than that with a zero surface emissivity. This investigation shows the importance of radiation heat transfer in a solar chimney system. The numerical results further show that the ventilation performance of the solar chimney is more sensitive to the change in the air gap width than to the change in the inlet aperture height, and an optimum inlet aperture height can be identified. References
  • C. Afonso and A. Oliveira. Solar chimneys: simulation and experiment. Energy and Buildings, 32:71--79, 2000. doi:10.1016/S0378-7788(99)00038-9.
  • J. Arce, M. J. Jiminez, G. Alvarez J. D. Guzman, M. R. Heras, and J. Xaman. Experimental study for natural ventilation on a solar chimney. Renewable Energy, 34:2928--2934, 2009. doi:10.1016/j.renene.2009.04.026.
  • E. Bacharoudis, M. G. Vrachopoulos, D. Margaris M. K. Koukou, A. E. Filios, and S. A. Mavrommatis. Study of the natural convection phenomena inside a wall solar chimney with one wall adiabatic and one wall under a heat flux. Applied Thermal Engineering, 27:2266--2275, 2007. doi:10.1016/j.applthermaleng.2007.01.021.
  • N. K. Bansal, J. Mathur, S. Mathur, and M. Jain. Modeling of window-sized solar chimneys for ventilation. Building and Environment, 40:1302--1308, 2005. doi:10.1016/j.buildenv.2004.10.011.
  • N. K. Bansal, R. Mathur, and M. S. Bhandari. Solar chimney for enhanced stack ventilation. Building and Environment, 28:373--377, 1993. doi:10.1016/0360-1323(93)90042-2.
  • A. Bejan. Heat Transfer. John Wiley and Sons, Inc., 1993.
  • S. A. M. Burek and A. Habeb. Air flow and thermal efficiency characteristics in solar chimneys and trombe walls. Energy and Buildings, 39:128--135, 2007. doi:10.1016/j.enbuild.2006.04.015.
  • Z. D. Chen, P. Bandopadhayay, J. Halldorsson, C. Byrjalsen, P. Heiselberg, and Y. Li. An experimental investigation of a solar chimney model with uniform wall heat flux. Building and Environment, 38:893--906, 2003. doi:10.1016/S0360-1323(03)00057-X.
  • Fluent Incorporated. Fluent User's Guide, 2006.
  • G. Gan. Impact of computational domain on the prediction of buoyancy-driven ventilation cooling. Building and Environment, 45:1173--1183, 2010. doi:10.1016/j.buildenv.2009.10.023.
  • K. H. Lee and R. K. Strand. Enhancement of natural ventilation in buildings using a thermal chimney. Energy and Buildings, 41:615--621, 2009. doi:10.1016/j.enbuild.2008.12.006.
  • F. Marcondes and C. Maliska. Treatment of the inlet boundary conditions in natural-convection flows in open-ended channels. Numerical Heat Transfer, Part B: Fundamentals, 35:317--345, 1999. doi:10.1080/104077999275893.
  • T. Miyazaki, A. Akisawa, and T. Kashiwagi. The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate. Renewable Energy, 31:987--1010, 2006. doi:10.1016/j.renene.2005.05.003.
  • B. Moshfegh and M. Sandberg. Investigation of fluid flow and heat transfer in a vertical channel heated from one side by PV elements, Part I---Numerical study. Renewable Energy, 8:248--253, 1996. doi:10.1016/0960-1481(96)88856-2.
  • S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York, 1980.
  • M. Sandberg and B. Moshfegh. Investigation of fluid flow and heat transfer in a vertical channel heated from one side by PV elements, Part II---Experimental study. Renewable Energy, 8:254--258, 1996. doi:10.1016/0960-1481(96)88857-4.
  • R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer. Hemisphere Publishing Corporation, Washington, 1981.
  • B. Zamora and A. S. Kaiser. Thermal and dynamics optimization of the convective flow in Trombe wall shaped channels by numerical investigation. Heat and Mass Transfer, 45:1393--1407, 2009. doi:10.1007/s00231-009-0509-6.





Proceedings Computational Techniques and Applications Conference