The metastability of the mid-latitude Southern Hemisphere circulation
DOI:
https://doi.org/10.21914/anziamj.v54i0.6177Keywords:
cluster analysis, high dimensional data, climateAbstract
Observed changes in the metastability of the Southern Hemisphere 500 hPa circulation are examined using non-stationary cluster analysis techniques. The cluster methodology is a purely data-driven approach for parametrisation whereby a multi-scale approximation to non-stationary dynamical processes is achieved through optimal sequences of locally stationary fast vector auto-regressive factor processes and some slow (or persistent) hidden process switching between them. Comparison is made with blocking indices commonly used in weather forecasting and climate analysis to identify dynamically relevant metastable regimes in the reanalysed 500 hPa circulation. Our analysis characterises the metastable regime in reanalysed observational data sets prior to 1978 as positive and negative phases of a hemispheric mid-latitude blocking state with the Southern Annular Mode (SAM) associated with a transition state. Post 1978, SAM emerges as a true metastable state replacing the negative phase of the hemispheric blocking pattern. Trends in the hidden state frequency of occurrences correspond to declining blocking (coherent structures) and increasing strength of the SAM (zonal flow). References- P. G. Baines. A survey of blocking mechanisms, with application to the Australian region. Aust. Met. Mag., 31:27--36, 1983. http://www.bom.gov.au/amoj/docs/1983/baines.pdf
- J. C. Bezdek. Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York, ISBN 0-306-40671-3, 1981.
- J. G. Charney and J. G. DeVore. Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36:1205--1216, 1979. doi:10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2
- A. Dawson, T. N. Palmer, and S. Corti. Simulating regime structures in weather and climate prediction models. Geophys. Res. Lett., 39:L21805, 2012. doi:10.1029/2012GL053284
- A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society Series B, 39:1--38, 1977. http://www.jstor.org/stable/2984875
- C. Franzke, D. T. Crommelin, A. Fischer, and A. J. Majda. A hidden markov model perspective on regimes and metastability in atmospheric flows. J. Climate, 21:1740--1757, 2008. doi:10.1175/2007JCLI1751.1
- C. Franzke, I. Horenko, A. J. Majda, and R. Klein. Systematic metastable atmospheric regime identification in an agcm. J. Atmos. Sci, 66:1997--2012, 2009. doi:10.1175/2009JAS2939.1
- I. Horenko. On robust estimation of low-frequency variability trends in discrete markovian sequences of atmospheric circulation patterns. J. of Atmos. Sci., 66(11):2059--2072, 2009. doi:10.1175/2008JAS2959.1
- I. Horenko. Finite element approach to clustering of multidimensional time series. SIAM J. Sci. Comput., 32:62--83, 2010. doi:10.1137/080715962
- I. Horenko. On clustering of non-stationary meteorological time series. Dynamics of Atmospheres and Oceans, 49:164--187, 2010. doi:10.1016/j.dynatmoce.2009.04.003
- I. Horenko. On the identification of nonstationary factor models and their application to atmospheric data sets. J. Atmos. Sci., 67:1559--1574, 2010. doi:10.1175/2010JAS3271.1
- I. Horenko. Nonstationarity in multifactor models of discrete jump processes, memory and application to cloud modeling. J. Atmos. Sci., 68(7):1493--1506, 2011. doi:10.1175/2011JAS3692.1
- D. A. Jones and I. Simmonds. A climatology of Southern Hemisphere anticyclones. Climate Dynamics, 10:333--348, 1994. doi:10.1007/BF00228031
- P. F. Noar. Numerical modelling of blocking, with reference to June 1982. Aust. Met. Mag., 31:37--49, 1983. http://www.bom.gov.au/amoj/docs/1983/noar.pdf
- T. J. O'Kane, J. S. Risbey, C. Franzke, I. Horenko, and D. Monselesan. Changes in the metastability of the mid-latitude southern hemisphere circulation and the utility of non-stationary cluster analysis and split flow blocking indices as diagnostic tools. J. Atmos. Sci., 70:824--842, 2013. doi:10.1175/JAS-D-12-028.1
- M. Pook and T. Gibson. Atmospheric blocking and storm tracks surfing SOP-1 of the FROST Project. Aust. Met. Mag., pages 51--60, 1999. http://www.bom.gov.au/amoj/docs/1999/pook.pdf
- J. S. Risbey, M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon. On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137(10):3233--3253, 2009. doi:10.1175/2009MWR2861.1
- M. R. Sinclair. A climatology of anticyclones and blocking in the Southern Hemisphere. Mon. Wea. Rev., 124:245--263, 1996. doi:10.1175/1520-0493(1996)124<0245:ACOAAB>2.0.CO;2
- S. Tibaldi. Low-frequency variability and blocking as diagnostic tools for global climate models. Proc. NATO Advanced Research Workshop on Prediction of Interannual Climate Variations, NATO-ASI:173--182, 1993.
- S. Tibaldi, E. Tosi, A. Navarra, and L. Pedulli. Northern and southern hemisphere seasonal variability of blocking frequency and predictability. Mon. Wea. Rev., 122:1971--2003, 1994. doi:10.1175/1520-0493(1994)122<1971:NASHSV>2.0.CO;2
- K. E. Trenberth and K. C. Mo. Blocking in the Southern Hemisphere. Mon. Wea. Rev., 113:3--21, 1985. doi:10.1175/1520-0493(1985)113<0003:BITSH>2.0.CO;2
- A. D. F. Wright. Blocking action in the Australian region. Bur. Met., Australia, Tech. Report 10:27pp, 1974.
- W. J. Wright. Seasonal climate summary southern hemisphere (autumn 1993): a second mature ENSO phase. Aust. Met. Mag., 43:205--221, 1994. http://www.bom.gov.au/amoj/docs/1994/wright.pdf
- M. Zidikheri, J. S. Frederiksen, and T. J. O'Kane. Multiple equilibria and midlatitude atmospheric blocking: a re-examination. World Scientific Lecture Notes in Complex Systems Vol. 6, Frontiers in turbulence and coherent structures, pages 59--86, 2007.
Published
2013-06-02
Issue
Section
Proceedings Computational Techniques and Applications Conference