Critical timescales and time intervals for coupled linear processes

Matthew Joseph Simpson, Adam John Ellery, Scott William McCue, Ruth Elizabeth Baker

Abstract


In 1991, McNabb introduced the concept of mean action time (MAT) as a finite measure of the time required for a diffusive process to effectively reach steady state. Although this concept was initially adopted by others within the Australian and New Zealand applied mathematics community, it appears to have had little use outside this region until very recently, when in 2010 Berezhkovskii and co-workers [A. M. Berezhkovskii, C. Sample and S. Y. Shvartsman, “How long does it take to establish a morphogen gradient?” Biophys. J. 99 (2010) L59–L61] rediscovered the concept of MAT in their study of morphogen gradient formation. All previous work in this area has been limited to studying single-species differential equations, such as the linear advection–diffusion– reaction equation. Here we generalize the concept of MAT by showing how the theory can be applied to coupled linear processes. We begin by studying coupled ordinary differential equations and extend our approach to coupled partial differential equations. Our new results have broad applications, for example the analysis of models describing coupled chemical decay and cell differentiation processes.

doi:10.1017/S1446181113000059

Keywords


reaction–diffusion equation, coupled reaction–diffusion equations, steady state, critical time



DOI: http://dx.doi.org/10.21914/anziamj.v54i0.6242



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.