Slip at the surface of an oscillating spheroidal particle in a micropolar fluid

H. H. Sherief, M. S. Faltas, Elsayed I Saad

Abstract


The axisymmetric rectilinear and rotary oscillations of a spheroidal particle in an incompressible micropolar fluid are considered. Basset type linear slip boundary conditions on the surface of the solid spheroidal particle are used for velocity and microrotation. Under the assumption of small amplitude oscillations, analytical expressions for the fluid velocity field and microrotation components are obtained in terms of a first order small parameter characterizing the deformation. For the rectilinear oscillations, the drag acting on the particle is evaluated and expressed in terms of two real parameters for the prolate and oblate spheroids. Also, the couple exerted on the spheroid is evaluated for the prolate and oblate spheroids for the rotary oscillations. Their variations with respect to the frequency, deformity, micropolarity and slip parameters are tabulated and displayed graphically. Well-known results are deduced and comparisons are made between the classical viscous fluids and micropolar fluids. The results of this study serve to improve the accuracy of viscosity measurements for micropolar fluids.

References
  • A. C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966) 1--18.
  • G. \T1\L ukaszewicz, Micropolar Fluids: Theory and Applications, Birkhauser, Boston, 1999.
  • A. C. Eringen, Microcontinuum Field Theories II: Fluent Media, Springer-Verlag, New York, 2001.
  • C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt, V. S. J. Craig, Boundary slip in Newtonian liquids: a review of experimental studies, Rep. Progr. Phys. 68 (2005) 2859--2897. doi:10.1088/0034-4885/68/12/R05
  • C. L. M. H. Navier, Memoire sur les lois du mouvement des fluids, Mem. Acad. R. Sci. Inst. France 6 (1823) 389--416
  • J. C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Phil. Trans. Roy. Soc. Lond. 170 (1879) 231--256.
  • E. Lauga, M. P. Brenner, H. A. Stone, Handbook of experimental fluid dynamics, Springer: New York, (2007), Chap. 19. doi:10.1007/978-3-540-30299-5
  • O. I. Vinogradova, Slippage of water over hydrophobic surfaces, Int. J. Miner. Process. 56 (1999) 31--60. doi:10.1016/S0301-7516(98)00041-6
  • E. Lauga, H. A. Stone, Effective slip in pressure-driven Stokes flow, J. Fluid Mech. 489 (2003) 55--77. doi:10.1017/S0022112003004695
  • L. Bocquet, J.-L. Barrat, Flow boundary conditions from nano-to micro-scales, Soft Matter 3 (2007) 685--693. doi:10.1039/B616490K
  • L. Bocquet, E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev. 39 (2010) 1073--95. doi:10.1039/B909366B
  • A. B. Basset, A Treatise on Hydrodynamics, Vol. 2, Dover, New York, 1961.
  • C. H. Choi, U. Ulmanella, J. Kim, C. M. Ho, C. J. Kim, Effective slip and friction reduction in nanograted superhydrophobic microchannels, Phys. Fluids 18 (2006) 087105. doi:10.1063/1.2337669
  • H. Luo, C. Pozrikidis, Effect of surface slip on Stokes flow past a spherical particle in infinite fluid and near a plane wall, J. Eng. Math 62 (2008) 1--21. doi:10.1007/s10665-007-9170-6
  • G. Willmott, Dynamics of a sphere with inhomogeneous slip boundary conditions in Stokes flow, Phys. Rev. E 77 (2008) 055302.
  • B. U. Felderhof, Hydrodynamic force on a particle oscillating in a viscous fluid near a wall with dynamic partial-slip boundary condition, Phys. Rev. E 85 (2012) 046303. doi:10.1103/PhysRevE.85.046303
  • H. H. Sherief, M. S. Faltas, E. I. Saad, Slip at the surface of a sphere translating perpendicular to a plane wall in micropolar fluid, Z. Angew. Math. Phys. 59 (2008) 293--312. doi:10.1007/s00033-007-6078-y
  • E. I. Saad, Motion of a spheroidal particle in a micropolar fluid contained in spherical envelope, Can. J. Phys. 86 (2008) 1039--1056. doi:10.1139/P08-045
  • R. P. Kanwal, Rotary and longitudinal oscillations of axisymmetric bodies in a viscous fluid, Q. J. Mech. Appl. Math. 8 (1955) 146--163.
  • R. P. Kanwal, Drag on an axially symmetric body vibrating slowly along its axis in a viscous fluid, J. Fluid Mech. 19 (1964) 631--636.
  • D. Palaniappan, Creeping flow about a slightly deformed sphere, Z. Angew. Math. Phys. 45 (1994) 832--838.
  • H. Ramkissoon, Slip flow past an approximate spheroid, Acta Mech. 123 (1997) 227--233.
  • S. Senchenko, H. J. Keh, Slipping Stokes flow around a slightly deformed sphere, Phys. Fluids 18 (2006) 088104. doi:10.1063/1.2337666
  • Y. C. Chang, H. J. Keh, Translation and rotation of slightly deformed colloidal spheres experiencing slip, J. Colloid Interface Sci. 330 (2009) 201--210. doi:10.1016/j.jcis.2008.10.055
  • H. Lamb, Hydrodynamics, 6th ed. Cambridge. 1932.
  • G. B. Jeffery, Steady rotation of a solid of revolution in a viscous fluid, Pro. Lond. Math. Soc. 14 (1915) 327--338.
  • R. P. Kanwal, Steady rotation of axially symmetric bodies in a viscous fluid, J. Fluid Mech. 10 (1960) 17--24.
  • P. Tekasakul, R. V. Tompson, S. K. Loyalka, Rotatory oscillations of arbitrary axisymmetric bodies in an axisymmetric viscous flow: Numerical solutions, Phys. Fluids 10 (1998) 2797--2818. doi:10.1063/1.869803
  • P. Tekasakul, S. K. Loyalka, Rotary oscillations of axisymmetric bodies in an axisymmetric viscous flow with slip: Numerical solutions for sphere and spheroids, Int. J. Numer. Meth. Fluids 41 (2003) 823--840.
  • J. Happel, H. Brenner, Low Reynolds number hydrodynamics, Martinus Nijoff, The Hague, Netherlands (1983).
  • S. K. Lakshmana, Rao, N. C. Pattabhi Ramacharyulu, P. Bhujanga Rao, Slow steady rotation of a sphere in a micropolar fluid, Int. J. Eng. Sci. 7 (1969) 905--916. doi:10.1016/0020-7225(69)90083-4
  • S. K. Lakshmana Rao, P. Bhujanga Rao, The oscillations of a sphere in a micropolar fluid, Int. J. Eng. Sci. 9 (1971) 651--672. doi:10.1016/0020-7225(71)90068-1
  • S. K. Lakshmana Rao, T. K. V. Iyengar, The rectilinear oscillations of a spheroid in a micropolar fluid, Int. J. Eng. Sci. 19 (1981) 161--188. doi:10.1016/0020-7225(81)90020-3
  • K. S. Sran, Longitudinal oscillations of a sphere in a micropolar fluid, Acta Mech. 85 (1990) 71--78. doi:10.1007/BF01213543
  • D. Srinivasa Charya, T. K. V. Iyengar, Drag on an axisymmetric body performing rectilinear oscillations in a micropolar fluid, Int. J. Eng. Sci. 35 (1997) 987--1001. doi:10.1016/S0020-7225(97)00103-1
  • D. Srinivasa Charya, T. K. V. Iyengar, Rotary oscillations of an approximate sphere in an incompressible micropolar fluid, Indian J. Math. 43 (2001) 129--144.
  • H. Hayakawa, Slow viscous flows in micropolar fluids, Phys. Rev. E 61 (2000) 5477--5492. doi:10.1103/PhysRevE.61.5477
  • K.-H. Hoffmann, D. Marx, N. D. Botkin, Drag on spheres in micropolar fluids with nonzero boundary conditions for microrotations, J. Fluid Mech. 590 (2007) 319--330. doi:10.1017/S0022112007008099
  • H. H. Sherief, M. S. Faltas, E. A. Ashmawy, Axisymmetric translational motion of an arbitrary solid prolate body in a micropolar fluid, Fluid Dyn. Res. 42 (2010) 065504. doi:10.1088/0169-5983/42/6/065504

Keywords


rectilinear and rotary oscillations, prolate and oblate spheroids, micropolar fluid, slip condition

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v55i0.6813



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.