Adaptive sparse grids

M. Hegland


Sparse grids, as studied by Zenger and Griebel in the last 10 years have been very successful in the solution of partial differential equations, integral equations and classification problems. Adaptive sparse grid functions are elements of a function space lattice. Such lattices allow the generalisation of sparse grid techniques to the fitting of very high-dimensional functions with categorical and continuous variables. We have observed in first tests that these general adaptive sparse grids allow the identification of the ANOVA structure and thus provide comprehensible models. This is very important for data mining applications. Perhaps the main advantage of these models is that they do not include any spurious interaction terms and thus can deal with very high dimensional data.

Full Text:



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.